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Robust Econometric Inference for Stock Return Predictability

Abstract

This study examines stock return predictability via lagged financial variables with un-
known stochastic properties. We conduct a battery of predictability tests for US stock returns
during the 1927-2012 period, proposing a novel testing procedure which: ¢) robustifies infer-
ence to the degree of persistence of the employed regressors, i) accommodates testing the
joint predictive ability of financial variables in multiple regression, i) is easy to implement
as it is based on a linear estimation procedure and iv) can be also used for long-horizon
predictability tests. We provide some evidence in favor of short-horizon predictability in the
full sample period. Nevertheless, this evidence almost entirely disappears in the post—1952
period. Moreover, predictability becomes weaker, not stronger, as the predictive horizon

increases.
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A fundamental issue in finance is whether future stock returns are predictable using publicly
available information (see Fama, 1970). The seminal studies of Keim and Stambaugh (1986),
Fama and French (1988) and Campbell and Shiller (1988) empirically demonstrated that cer-
tain financial variables have significant predictive ability over future stock returns. Fama (1991)
interpreted these findings as evidence of time-varying risk premia rather than evidence against
market efficiency. Despite the significant volume of subsequent research, the predictability de-
bate still remains unsettled (see Ang and Bekaert, 2007, for an insightful discussion). On the
one hand, Lettau and Ludvigson (2001, p. 842) state that “it is now widely accepted that
excess returns are predictable by variables such as dividend-price ratios, earning-price ratios,
dividend-earnings ratios and an assortment of other financial indicators”. But many remain
sceptical, claiming that the “profession has yet to find some variable that has meaningful and
robust empirical equity premium forecasting power both in-sample and out-of-sample” (Welch
and Goyal, 2008, p. 1505).

Empirical support of arguments in favor of or against predictability crucially relies on in-
ference from predictive regressions, hence the size and power of the employed hypothesis tests
assume fundamental importance. A series of recent studies, reviewed in Campbell and Yogo
(2006) (hereafter CY), recognize that the most common problem undermining confidence in the
reliability of predictability tests is the uncertainty about the (unobservable) time series proper-
ties of the predictor variables and, in particular, their degree of persistence. Regardless of one’s
prior beliefs on their order of integration, it is well documented that most of the variables used
in predictive regressions are highly persistent with autoregressive roots extremely close to unity
(see CY, and Welch and Goyal, 2008). This empirical fact casts doubt on the validity of standard
t-tests based on least squares regressions (see Cavanagh, Elliott and Stock, 1995, and Torous,
Valkanov and Yan, 2004). As Stambaugh (1999) has convincingly shown, this problem is exacer-
bated if, additionally, the innovations of the predictor are highly correlated with the innovations
of the returns, i.e., when the predictive regressor is endogenous. Endogeneity is a typical feature
of commonly used predictors, such as price-scaled ratios. Since regression estimators and tests
have fundamentally different properties in the presence of persistent and endogenous predictors,
confidence in the reliability of predictability tests is undermined, as the quality of inference is

conditional upon correct specification of the predictors’ time series properties.



Acknowledging the uncertainty regarding the degree of predictive variables’ persistence, a
strand of the literature suggests modelling these variables as local-to-unity processes (see inter
alia Lanne, 2002, Valkanov, 2003, Torous et al., 2004, CY, Jansson and Moreira, 2006, and
Hjalmarsson, 2011). These processes assume the form of a first-order autoregression with root
p = 1+ ¢/n, approaching a random walk as the sample size n increases to infinity. While pro-
viding flexibility in modelling, the use of explanatory variables that exhibit persistence without
necessarily being random walks in finite samples raises serious technical complications. Since
standard cointegration methods cannot accommodate the presence of local-to-unity roots in pre-
dictive regressions, Cavanagh et al. (1995), Torous et al. (2004), CY, and Hjalmarsson (2011)
have employed methods based on inverting the non-pivotal limit distribution of the t-statistic
and constructing Bonferroni-type confidence intervals for the nuisance parameter ¢. This is the
current state of the art methodology for testing the predictability of stock returns with highly
persistent regressors.

Practical implementation of the above methodology presents two main drawbacks. First,
the method is invalid if the regressor contains stationary or near stationary components; the
validity of the method requires each predictor to be at least as persistent as a local-to-unity
process, a restrictive assumption that cannot be empirically tested. Second, due to the problems
associated with the construction of multidimensional confidence intervals for ¢, the methodology
is restricted to the case of a scalar regressor, i.e., a single predictive variable. This imposes a
severe restriction, since the joint predictability by combinations of financial variables cannot
be tested. The above framework can only accommodate testing the predictive power of each
financial variable in isolation, which may result in loss of information through omitted variables.
These limitations have also been indicated by Ang and Bekaert (2007, footnote 3). We build
upon this strand of the literature by proposing a methodology that successfully overcomes these
limitations.

In recent work, Phillips and Magdalinos (2009) provide a framework of limit theory that
can be used to validate inference in models with regressors exhibiting very general time series
characteristics. Endogeneity is successfully removed by means of a data filtering procedure
called IVX estimation. The key idea behind the method is the explicit control of the degree

of persistence of data-filtered IVX instruments, restricted within the class of near stationary



processes. In this study, we prove that in the context of multivariate predictive regressions, the
IVX approach yields standard chi-squared asymptotic inference for testing general restrictions
on predictive variables with degree of persistence covering the entire range from stationarity
of stable autoregressions to pure nonstationarity of unit root processes. The robustness of the
IVX approach should alleviate practical concerns about the quality of inference under possible
misspecification of the time series properties of the predictive regressors. The dimensionality of
the system of predictive regressions is of considerable practical importance too, since the IVX
methodology enables the assessment of the joint predictive power of various combinations of
regressors.’ In summary, our study introduces and implements a testing procedure that resolves
two important outstanding issues in the predictability literature: i) robustness with respect to
the time series properties of the predictors and ii) joint testing in systems of predictive equations.
Furthermore, we show that this testing procedure is also applicable to long-horizon predictive
regressions and we develop the relevant statistic.

We implement the proposed methodology by conducting a battery of short- and long-horizon
predictability tests for US stock returns during the 1927-2012 period, using a set of commonly
employed variables. We focus on in-sample predictability tests since the proposed methodology
aims to robustify in-sample inference with respect to regressors’ unknown time series properties.
In univariate tests, we find significant predictive ability with respect to 1-period ahead excess
market returns for the earnings-price and book-to-market value ratios as well as net equity
expansion. However, this evidence almost entirely disappears in the post—1952 period. Only the
consumption-wealth ratio is found to be strongly significant in this subperiod. Our multivariate
tests show that the combination of the earnings-price ratio and T-bill rate is highly significant
and robust to the choice of data frequency and examined period. Finally, with respect to long-
horizon tests, we find that, if anything, predictability generally becomes weaker, not stronger,
as the horizon increases. Only the consumption-wealth ratio remains strongly significant for all
horizons examined.

The rest of this study is organized as follows. Section 1 presents the IVX methodology

Tt should be noted that the iterative procedure of Amihud, Hurvich and Wang (2009) also accommodates
multiple predictors under the restriction that these are stationary. Moreover, the recent contribution of Kelly and
Pruitt (2013) also utilizes a multivariate system of predictive regressions. However, their focus is on extracting
information regarding aggregate expected returns and dividend growth from the cross-section of price-dividend
ratios using the present value relationship that has been employed for predictability tests inter alia by Lettau
and Ludvigson (2005), Cochrane (2008), Lettau and van Nieuwerburgh (2008) and van Binsbergen and Koijen
(2010).



in systems of predictive regressions, while a comprehensive Monte Carlo study for the finite-
sample properties of the derived test statistic is provided in Section 2. Section 3 presents the
dataset used in the empirical analysis. In Section 4 we carry out short-horizon predictability
tests for US stock returns, while in Section 5 we generalize the testing procedure to long-horizon
predictive regressions, we examine the finite-sample properties of the corresponding statistic and
we present the results from long-horizon predictability tests. Section 6 contains some concluding
remarks. The Appendix outlines the large-sample distributional properties of IVX estimation
and inference. The proofs are collected in the Online Appendix, which also contains a series of

further results.

1. Robust inference for predictive regressions

This section develops an econometric methodology for testing stock return predictability that is
robust to uncertainty over the stochastic properties of the financial variables used as potential
predictors. Accommodating this uncertainty requires a modelling framework that encompasses
all empirically relevant classes of autoregressive data generating mechanisms. To this end, we
consider the following multivariate system of predictive regressions with regressors containing

explanatory variables with arbitrary degree of persistence:

Yo = pt+ Az +e, (1)

rr = Rpziq+ Ut (2)
where A is an m x r coeflicient matrix and
C
Rp = I, + — for some a > 0, (3)
n

and some matrix C' = diag(cy, ..., ¢;), where n denotes the sample size. The vector of predictive
variables z; in (2) exhibits a degree of persistence induced by the autoregressive matrix in (3)

that belongs to one of the following persistence classes:
P(i) Integrated regressors, if C' =0 or o> 1 in (3).

P(ii) Local-to-unity regressors, if C #0 and =1 in (3).



P(iii) Near stationary regressors, if ¢; <0 for all i and « € (0,1) in (3).

P(iv) Stationary regressors, if ¢; <0 for all i and o =0 in (3).

The classes P(i)-P(iv) include predictors with very general time series characteristics varying
from purely stationary to purely non-stationary processes and accommodating all intermediate
persistence regimes. The predictive regression system may be initialized at some x that could
be any fixed constant vector or a random process satisfying ||zo (n)| = op (n1/2) when a > 1 or
a=0and [|zo (n)| = op (n*/?) when « € (0,1).

Estimators and test statistics for conducting inference on the matrix A have very different
properties according to the classification of the predictor process in (2) into one of the above
persistence classes. Standard tests are asymptotically valid only within each class P(i)-P(iv) and
misspecification of the degree of predictor persistence may lead to severe size distortions, partic-
ularly in the presence of endogeneity, i.e., correlation between the innovations ; and wu; of the
predictive regression system (1)—(2) (see Elliott, 1998).2 CY have partly addressed the problem
for univariate predictive regressions (m =r =1 in (1)—(2)) by inverting the limit distribution
of the t-statistic under a local-to-unity regime P(ii) and using the Bonferroni inequality to con-
struct confidence intervals which are asymptotically valid under P(i) or P(ii). However, the CY
method loses its asymptotic validity for predictors that lie closer to the stationary region than
local-to-unity time series. Such predictors can be modelled either as local-to-unity processes
with ¢; in (3) being large in absolute value (Phillips, 1987) or, more formally, as belonging to
the class P(iii) of near stationary processes established by Phillips and Magdalinos (2007) and
extended to multivariate systems of regression equations by Magdalinos and Phillips (2009).

We provide valid inference on A when there is no a priori knowledge of whether z; belongs
to class P(i), P(ii), P(iii) or P(iv). Our methodology for achieving robust inference is based on

the IVX instrumentation procedure proposed by Phillips and Magdalinos (2009). The intuition

2In general, long-run endogeneity cannot be removed by standard cointegration methods such as the fully
modified least squares estimation of Phillips and Hansen (1990) or the approaches of Saikkonen (1991) and Stock
and Watson (1993) that apply when the regressor is a pure random walk (¢ = 0). As pointed out by Elliott
(1998), such endogeneity corrected estimators lose their asymptotic mixed normality property under a local-to-
unity regime and the associated hypothesis tests have a non-standard limit distribution, with the non-centrality
parameter depending on the coefficient ¢ of the local-to-unity root. Since ¢ cannot be consistently estimated,
the endogeneity cannot be removed, leading to asymptotically invalid predictability tests. Analogous problems
arise when predictors exhibit a lower degree of persistence relative to local-to-unity processes, as is the case
with the class of “near stationary” processes introduced by Phillips and Magdalinos (2007) as well as stationary
autoregressive processes.



behind this procedure is to construct an instrumental variable whose degree of persistence we
explicitly control. In this way, the inference problems arising due to the uncertainty regarding
the persistence of the original regressor are avoided. Using the constructed instrument, one then
performs a standard instrumental variable estimation. It turns out that the derived estimator
follows asymptotically a mixed normal distribution, and hence the corresponding Wald statis-
tic follows asymptotically a chi-squared distribution under the null, considerably simplifying
inference.

To fix ideas, we construct near stationary instruments belonging to the class P(iii) by differ-
encing the regressor x; and constructing a new process according to an artificial autoregressive

matrix with specified persistence degree. Despite the fact that the difference:
Ary = uy + ﬁxt—l

is not an innovation unless the regressor belongs to the class P(i) of integrated processes, it
behaves asymptotically as an innovation after linear filtering by a matrix consisting of near
stationary roots of the type P(iii). Choosing an artificial matrix:

RnZ:IML% ge(0,1), C, <0, (4)

nb’

IVX instruments Z; are constructed as a first-order autoregressive process with autoregressive
matrix R,,, and innovations Azy:

215 = angt—l + AeTt (5>

initialized at Zy = 0. In particular, we use C, = —I,, and 8 = 0.95.

This choice of 8 follows from the size and power properties of the subsequently derived
Wald test.®> Extensive Monte Carlo simulations presented in the Online Appendix show that
the finite-sample size of the test is very close to the nominal 5% level regardless of the value of
(B. This holds true for all cases of regressor persistence considered. With respect to the power
of the test, we find that it increases monotonically as § increases for all cases considered. This

property is also suggested by the n(1*#)/2 rate of convergence of the IVX estimator in Theorem

3To be precise, we follow the convention in prior literature and use the term "size" throughout this study to
indicate the "probability of a Type I error" for the various test statistics considered.



A(i) provided in the Appendix. A closer inspection of the reported power plots suggests that
starting from low or moderate values of 3, there are considerable power gains when we further
increase 8 towards its upper boundary, especially when the true value of A is closer to the null.
Given this evidence, we confidently argue that high values of 5 yield the highest level of power
for the Wald test and, at the same time, yield size very close to the nominal 5% level. Therefore,
in the empirical implementation of our testing procedure, we use § = 0.95, which is among the
highest values that 8 can take. Moreover, we strongly advise against using values of 3 less than
0.9, as they may lead to unnecessary loss of power for the test statistic.

As it is standard in the literature, we assume that the innovations &; of the predictive
equation (1) are uncorrelated, while allowing for correlation in the innovations of the predictor
sequence u;. The dependence structure of the innovations is formally presented below: part
(i) provides assumptions under conditional homoskedasticity; part (ii) accommodates a general

form of conditional heteroskedasticity under additional assumptions.

Assumption INNOV. Let ¢ = (¢}, ¢}), with &; as in (1), denote an R™ " -valued martingale

difference sequence with respect to the natural filtration Fy = o (€, €4—1, ...) satisfying

Er,_, (Eteg) =3; a.s. and supk ||€t||28 < o0 ©

tEL

for some s > 1, where ¥; is a positive definite matriz. Let uy in (2) be a stationary linear

process
00

u = Cier; (7)
=0

where (C’j)j>0 a sequence of constant matrices such that Z;‘;O C; has full rank and Cy = I,.

We maintain one of the following assumptions:
(i) 3¢ =3¢ for all t and 3272, ||Cj| < oo

(ii) The process (€t),cy i strictly stationary ergodic satisfying (6) with s =2 and

lim HCOU [vec (eme, ) ; vee (eoep) | H = 0. (8)

m—00

"We would like to thank an anonymous referee for suggesting this clarification.



The sequence (Cj),q in (7) satisfies

> illCll < . (9)
j=0

The sequence (et),cy admits the following vec-GARCH (p, q) representation:

q P
g = Htl/277t, vec (Hy) =¢ + Z Ajvech (g4—iey_;) + Z Byvech (H;_y) (10)
i=1 k=1

where (0;),ez s an ii.d. (0,1,) sequence, @ is a constant vector, A;, By are sym-
metric positive semidefinite matrices for all i,k, and the spectral radius of the matrix

T =370 Ai + 37k Bi satisfies p(T') < 1.

Assumption INNOV (i) imposes conditional homoskedasticity on the martingale difference
sequence ¢; and short-memory on the linear process (7). Assumption INNOV(ii) accounts for
conditionally heteroskedastic ¢; with finite fourth-order moments of a very general form: the
vec-GARCH process in (10) is the most general multivariate GARCH specification (see Chapter
11 of Francq and Zakoian (2010)).°

Following standard notational convention, we define the short-run and long-run covariance

matrices associated with the innovations ; and w in (1), (2) as follows:

Yee=F (Etﬁé) y Yeuw = F (Etu;:) y Yy = F (utué) (11)
) 0o

Quu = Z E (utu;_h) y Qey = Vew + A;aa Aye = ZE (utag—h) : (12)
h=—00 h=1

Note that )., is only a one-sided long-run covariance matrix because ¢; is an uncorrelated
sequence by Assumption INNOV. For the same reason, the long-run covariance of the ¢; sequence

is equal to the short-run covariance ... Denoting by &; the OLS residuals from (1) and by 1,

>The positive semidefinite condition on the matrices A;, By of (10) and the condition on the spectral radius
of their sum are part of the standard Boussama (2006) stationarity conditions for the vec-GARCH process; see
Theorem 11.5 of Francq and Zakoian (2010). Condition (8) is a mild weak dependence requirement on the process
vec(erey): it is satisfied if €; is given a vec-GARCH specification analogous to &, but the results in this paper do
not require a parametric specification of the conditional variance structure of the e; process. A general discussion
of the rate of decay of the autocovariance function in (8) in the case of univariate conditionally heteroskedastic
time series admiting a stationary ARCH(co) representation is included in Giraitis, Kokoszka and Leipus (2000).
The summability condition (9) is standard in the literature on short-memory linear processes (see Phillips and
Solo, 1992).

10



the OLS residuals from (2), the covariance matrices in (11) can be estimated in a standard way:

. I, . e I, . ¢ I .
Yee = - Zatsg, Yeu = - Zatug, Suu = - Ty} (13)
t=1 t=1 t=1
Accommodating autocorrelation in u; that takes the general form (7) requires non-parametric
estimation of the long-run covariance matrices in (12): letting M,, be a bandwidth parameter

satisfying M, — oo and M,/y/n — 0 as n — oo, we employ the usual Newey-West type

estimators
1 My, h n
[\uu - ( - > ﬁta;fha Qo = zAluu + AUU + A;u (14>
i Mn+1/, ht1
N 1 My, h & A Al A < A/
Aye = n 1= M, +1 UtE_ps Qey, = Yew + Aw-:‘ (15)
h=1 n t=h+1

Under the full generality of Assumption INNOV, we provide robust inference for the matrix of
coefficients A that is invariant to the predictive variables belonging to classes P(i)-P(iv).
Allowing for the presence of an intercept in the predictive equation (1) requires further
development of IVX estimation and testing theory. The first step is to use a standard demeaning
transformation of (1) that yields exact invariance of estimation of A to the presence of an
intercept. We denote sample averages of variates in the system (1)—(2) by g, = n™1 Y1, v,
Tpo1 =n Y0 @, B = n Y01 &, the demeaned variates by Y; = y; — U, Xi = @4 —
Tp_1 and & = g, — &, the resulting (demeaned) regression matrices by Y = (Y{,...,Y;))" and
51

X = (X(’), ey ;Lfl),, and the (undemeaned) instrument matrix by Z = (2{), e B

)’. We may
obtain invariance to the presence of the intercept p in the predictive equation by subtracting

Un = b+ AZp_1 + &, from (1) and obtaining the transformed predictive equation
Yi=AXp 1 + & (16)

We now proceed with IVX estimation of A from the predictive regression system (16), by con-

sidering a two-stage least squares estimator based on the near stationary instruments in (5):

-1
n n

. -
Avx =Y'Z (X’Z> = (e —n) By [ (35— Fn1) | (17)
=1 =1

11



Note that the estimator does not involve a demeaned version of the matrix of instruments, as
the IVX estimator in (17) is invariant to demeaning Z;_1 by Z,_1.

The asymptotic behavior of the normalized and centred IVX estimator in (17) is summarized
by Theorem A in the Appendix. It turns out that the varying persistence levels of the predictor
process in (2) and the effect of estimating an intercept in the predictive model (1) become
manifest only in the limit distribution of the normalized signal matrix X’Z. After appropriate
centering and normalization, the Y'Z component of the IVX estimator converges in distribution
to a Gaussian variate that is independent of the (possibly) random limit in distribution of the
signal matrix. As a result, the IVX estimator in (17) follows a mized Gaussian limit distribution
irrespective of the degree of persistence of the predictor variable in (2).

The asymptotic mixed normality property of the IVX procedure implies that linear restric-
tions on the coefficients A generated by the system of predictive equations (1) can be tested by
a standard Wald test based on the IVX estimator for all persistence scenarios conforming to the

classes P(i)-P(iv). In particular, we consider a set of linear restrictions
Hy : Hvec(A) = h, (18)

where H is a known ¢ x mr matrix with rank ¢ and h is a known vector. We propose the

following IVX-Wald statistic for testing Hp in (18):
- ro -
WIVX = (HVGCA[VX - h) QI_{ <HV€CA]VX - h) (19)
where Apyx is the IVX estimator in (17),

Qn = H[(Z’X)léglm]M[(X’Z)l@Im} ik
M = Z'Z

QFM = 285_9811,@

and the matrices .., €2y, and Q,, are defined in (13), (14) and (15).

12



Theorem 1. Consider the model (1)-(8) under Assumption INNOV with instruments Z; de-
fined by (4) and (5). Then, the Wald statistic in (19) for testing (18) satisfies

Wivx = x*(q) asn— oo

under Hy, for the following classes of predictor processes x; in (2):
(i) P(i)-P(iv) under Assumption INNOV (i)
(ii) P(i)-P(iii) under Assumption INNOV (ii).

The proof of Theorem 1 can be found in the Online Appendix. Theorem 1 establishes the
robustness of the IVX-Wald test in (19) to the persistence properties of the predictor process
in (2). It shows that the IVX methodology provides a unifying framework of inference in
predictive regressions that encompasses the whole range of empirically relevant autoregressive
data generating mechanisms, from stationary processes to purely nonstationary random walks.

The only class of predictor variables not covered by Theorem 1 is that of purely stationary
autoregressions P(iv) with conditionally heteroskedastic innovations. This is by no means sur-
prising since, in the above case, the IVX-Wald test statistic is asymptotically equivalent to a

standard Wald statistic of the form:
W, = (HvecAOLS - h)' [H { xX'x) e 258} H’} - (HvecAOLs — h>

with AOLS the usual OLS estimator. It is well known that, even with a priori knowledge
that z; is a stationary process, W, will not have a x?(g) limit distribution when the inno-
vation sequence ¢; in (1) is conditionally heteroskedastic because the asymptotic variance of
n=1/2 Yoy (w—1®e)isgivenby T = E (mt_lxg_l ® stsg) and does not factorise to E (act_lw;_l) ®
Y as in the case when ¢; are conditionally homoskedastic (see equation (35) in Theorem A
below). Consequently, the matrix (X'X )71 ® f]sa is no longer a consistent estimator of the
asymptotic variance of vec (flo LS) and W, will fail to be asymptotically x? (¢).

This failure is a characteristic of least squares regression rather than IVX methodology. It
can be rectified by introducing a White (1980)-type of correction in the Wald statistic. In

particular, using Y, =nt Yoy (Zt_lié_l ® étég) as estimator for Y, with & being the OLS

13



residuals from (1), and replacing the matrix M in (20) by M =nY, — NZp—1%Z,_1 & Qs makes
the IVX-Wald statistic in (19) heteroskedasticity-robust even in the P(iv) case.

The robustness of the IVX-Wald statistic to conditional heteroskedasticity for the persistence
classes P(i)-P(iii) is a novel result of considerable interest: it depends on establishing the invari-
ance, under Assumptions INNOV (i) and INNOV(ii), of the limit distribution in the central limit
theorem for n=(1F)/23™" (2,1 ® &) for a € (0,1); see Lemma B4 of the Online Appendix.
Since the IVX instrument Zz; behaves asymptotically as a near stationary process (z; if § < «
and z; if f > «), Lemma B4 ensures that vec <f~11V X) will have the same asymptotic variance
under Assumptions INNOV(i) and INNOV((ii) for all @ > 0. The methods developed in Lemma
B4 can be used in a wider context to show that any amount of persistence (even of arbitrarily
small order) in the regressor z; alleviates asymptotically the effect of conditional heteroskedas-
ticity and results to ¢t and Wald statistics with standard limit distributions. This phenomenon
becomes manifest in long-horizon predictive regressions when the horizon parameter tends to
infinity with the sample size; see Theorem 2(ii) in Section 5 below.

Removing the finite-sample distortion to the mixed normal limit distribution of the IVX
estimator caused by the estimation of the intercept is another subtle issue. The component Qg7
in the quadratic form of the Wald statistic in (19) contains a finite-sample correction in the form
of a weighted demeaning of the dominating term Z'Z ® 3. of M in (20) by nz,—1%z,_ 1 ® Qprur
Despite not contributing to the first-order limit theory for Wiy x, this correction removes the
finite-sample effects of estimating an intercept in (1). As discussed in Remark A(b) of the
Appendix, these effects are more prominent for highly persistent regressors that are strongly
correlated with the predictive model’s innovations ;. Weighting the demeaning in (20) by
the long-run covariance matrix (that appears in the Phillips and Hansen (1990) FM-
endogeneity correction for integrated systems) controls the effect of correlation between £, and
uz on the remainder term of the Gaussian first-order approximation (see equation (36) in the
Appendix) by the degree of demeaning of the instrument moment matrix Z'Z. To obtain better

intuition on the nature of the correction in (20), assume for simplicity that m = r = 1; then

n
M = thz—l —nzp_y (1-p2,) | B
=1

14



where p.,, = qu /V f]EEQuu is an estimator of the long-run correlation coefficient between e; and
u;. Therefore, the correction in (20) applies a weighting of the demeaning of the Z’'Z matrix
according to the magnitude of the absolute value of the long-run correlation coefficient p,,,, with

higher values of p., associated with reduced degree of demeaning.

2. Finite-sample properties

2.1 Univariate case

This Section analyzes the finite-sample performance of the IVX-Wald statistic in (19) by means
of an extensive Monte Carlo study and compares it to the performance of the Q-statistic of CY
and the 7( o5 statistic of Jansson and Moreira (2006, henceforth JM). We run two-sided tests
with nominal size 5% for all three statistics under the null hypothesis that the slope coefficient
in the predictive regression is zero, i.e., Hy: A = 0.

We use the following data generating process (DGP) for the univariate case, where y; and
x; are scalars. For t € {1,...,n}, the innovation sequences e, ~ NID(0,1) and e; ~ NID(0,1)

generate the model:

Yy = pt+ Az te (22)
ry = Rpxi—1+uw, R,=1+C/n (23)
U = Qup_1+ e (24)

We denote by § = E (g,u;) the contemporaneous correlation coefficient between &, and ;. Simu-
lation results using 10,000 repetitions are presented for values of C' € {0, —5, —10, —15, —20, =50},
0 € {-0.95,-0.5,0,0.5,0.95}, sample size n € {100, 250, 500,1000} and ¢ € {0,0.5}. In the On-
line Appendix, we also present simulation results for ¢ = 0.25 and ¢ = —0.1, while additional
results for 6 € {—0.75,—-0.25,0.25,0.75} are available upon request. The system is initialized
at xg = 0. The IVX estimator and the corresponding Wald statistic are invariant to the value
of 1, so we opt for © = 0. We consider the following sequence of local alternatives for power

comparisons:

b
A— ;ﬂ for b € {0,2,4, .,32,40, 60,100} (25)
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with b = 0 = A = 0 corresponding to the size of each test.

The results regarding the empirical size in the case of no autocorrelation in the predictor’s
innovation sequence u; (i.e., ¢ = 0) are presented in Table 1. We observe that for sample
sizes n > 250 the Wald statistic has excellent size control across all values of C and §. For
n = 100, it only appears to be slightly oversized when [6| = 0.95 and C' € {0,—5}. For the
other combinations of C' and §, the Wald statistic has the correct size. On the other hand,
the Q-statistic appears to be undersized for moderate to high values of 0, such as [d| = 0.5;
increasing the sample size does not seem to remedy this problem. Moreover, for autoregressive
roots away from unity and very high values of |4|, the Q-statistic becomes severely oversized; see
e.g., the combinations R,, = 0.5 and |4| € {0.95,0.5} as well as R,, = 0.8 and |§| = 0.95. This
is a manifestation of the fact that the CY procedure is not valid for predictors with low degree
of persistence. Finally, the JM statistic also exhibits severe size distortions. The most striking
finding is that it becomes extremely oversized across all degrees of regressor persistence when
|0] = 0. In addition, considering high values of ||, such as |§| = 0.95, and autoregressive roots
away from unity, the JM statistic becomes severely oversized too. Its size distortions appear to

be minimized when |§| = 0.5.
—Table 1 here—

We subsequently examine the finite-sample size of these three statistics in the presence of
autocorrelation in wu;. Table 2 refers to the case where u; is an AR(1) process with root ¢ = 0.5.
We find that the Wald statistic exhibits size very close to the nominal 5% apart from some
slight oversizing for n = 100, C' € {0, —5} and |0| = 0.95. On the other hand, the Q-statistic has
size substantially lower than the nominal 5% for |§| = 0.5. Moreover, for C = —50, |§| = 0.95
and n = 100, 250, 500, the Q-statistic is severely oversized. Regarding the JM statistic, its size
distortions are exacerbated in the presence of autocorrelation. The statistic is severely oversized
for both high and low values of |§| across all degrees of regressor persistence. As in the case of

no autocorrelation, the size distortions of this statistic appear to be minimized when |§| = 0.5.
—Table 2 here—

We next examine the power properties of the three statistics. Our simulation study computes

power with respect to the local alternatives given in (25) without size adjustment, as there is
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no oversizing in the proposed Wald statistic. We present here results for sample size n =
250 and correlations 6 € {—0.95,—0.5,0}, while the corresponding results for n = 1000 are
presented in the Online Appendix.® The power plots presented here correspond to the case of
no autocorrelation in u; (i.e., ¢ = 0), while in the Online Appendix we present the corresponding
power plots for ¢ = 0.5.

Figure 1 presents the power of the three statistics for n = 250, § = —0.95 and for all values
of C considered. We observe that in the unit root case (C' = 0), the Wald statistic has higher
power than the Q-statistic for alternatives close to the null hypothesis but this relationship is
reversed for alternatives farther away from the null. For all of the other persistence scenarios
(i.e., for all values of C' < 0), the Wald statistic dominates the Q-statistic for any choice of
local alternative and §. The distance between the power curves of the two statistics increases in
favor of the Wald test as the persistence of the regressor is reduced towards stationarity (i.e., as
|C| increases). The last Panel of Figure 1 for C' = —50 shows that despite being considerably
oversized in this case, the Q-statistic appears to have lower power in comparison to the (correctly
sized) Wald test. Moreover, the JM statistic is characterized by a remarkable lack of power,
with the exception of the unit root case. For lower degrees of regressor persistence, the power of
the JM statistic is approximately equal to its size even for alternatives far away from the null,

undermining further its suitability for predictability tests.
—Figure 1 here—

Figure 2 presents power comparisons for 6 = —0.5 and n = 250. The power of the Wald test
uniformly dominates that of the Q-statistic for all persistence scenarios, including that of a unit
root regressor (C' = 0). As before, the dominance of the IVX over the CY procedure increases
as the degree of persistence is reduced towards stationarity. In addition, the power of the JM
statistic is much lower relative to the other two statistics, especially as we move away from the

unit root case.

—Figure 2 here—

In addition, simulation results for n € {100,500} and & € {—0.75, —0.25} are available upon request. The
relative performance of the IVX and CY procedures is very similar to the results reported in this section; the
Wald statistic dominates the Q-statistic in terms of power, with the exception of the combinations § € {—0.95,0}
and C' = 0, where there is no dominating relationship.
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Figure 3 presents power comparisons for § = 0 and n = 250. The Q-statistic appears to have
higher power relative to the Wald statistic in the unit root case (C' = 0). However, as the degree
of persistence is reduced (C' < 0), the power of the Wald statistic becomes indistinguishable
from the power of the Q-statistic. The lack of power for the JM statistic relative to the Wald
and the Q-statistic is evident in this case too. Interestingly, this conclusion holds true even in

the cases where the JM statistic is severely oversized.

—Figure 3 here—

2.2 Conditionally Heteroskedastic DGP

Recalling that the asymptotic results for the proposed Wald statistic are also valid under condi-
tional heteroskedasticity, we employ a GARCH(1,1) DGP to examine the finite-sample properties
of the statistic and compare them with the corresponding properties of the Q-statistic of CY
(see the Online Appendix for the DGP specification).

Extensive simulation results are reported in the Online Appendix. We find that the Wald
statistic exhibits no size distortion for every parameter combination considered. The Q-statistic
exhibits correct size for § = 0, but it is oversized for the combination n = 100, |§| = 0.95 and
C = —50, while it is undersized when |§| = 0.5. With respect to the power of the tests, we find
that for § = —0.95 the Wald statistic dominates the Q-statistic for every degree of regressor
persistence considered. The same conclusion is derived for § = —0.5. For § = 0, we find that
in the unit root case (C' = 0), the Q-statistic has higher power than the Wald statistic, while
for all other degrees of regressor persistence (C' < 0), the two statistics appear to have the same

power.

2.3 Additional Monte Carlo results

We additionally examine the robustness of the power properties of the IVX-Wald statistic with
respect to the choice of kernel for the estimation of the long-run covariance matrix. In particular,
apart from the Bartlett kernel that we use in the benchmark results, we alternatively use: )
the Parzen kernel and ii) the Quadratic Spectral kernel. Results are reported in the Online
Appendix. In most of the cases, we find that the power plots are almost indistinguishable across

the three kernels used.
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Finally, we examine the robustness of the power properties of the IVX-Wald statistic when
alternative lag lengths are used for the Newey-West estimator of the long-run covariance matrix.

1/3 that we use in the benchmark results, we

In particular, apart from the truncation lag n
alternatively consider the following truncation lags: i) n'/4 and ) n'/2, where n is the sample
size. Overall, the results presented in the Online Appendix show that the choice of truncation

lag yields no considerable difference in terms of power.

2.4 Multivariate case

In this Section, we examine the finite-sample performance of the Wald statistic in the context
of multivariate regressions. We generalise the DGP of Section 2.1 to include more than one

predictors. In particular, we use the following DGP:

vy = p+Axi1+e, e~ NID(0,1), (26)
xy = Rpxy1+w, R,=1+0C/n, (27)
u = Pup1te, O =diag(dy,dy,03), e~ N(0,0), (28)
2 o= B(GG), G=(nw) (29)

where x; is a 3 X 1 vector that contains three regressors. Each regressor is characterised by a
different degree of persistence. In particular, we set C' = diag (0, —10, —100), corresponding to
a unit root, a local-to-unity and a stationary regressor.”

To render the examined setup empirically relevant, we use values for ® and ¥ that are esti-
mated from a predictive system with the CRSP S&P 500 log excess returns being the regressand
and the earnings-price ratio (unit root), T-bill rate (local-to-unity) and inflation rate (stationary)
being the regressors. In particular, Correlation Set 1 corresponds to the correlation structure
of the residuals (0’s) and autocorrelation coefficients (¢’s) that are estimated from monthly
data during the full sample period, while the corresponding parameters of Correlation Set 2
are estimated from quarterly data. In addition to these parameters, we also examine the size

properties of the Wald test when alternatively ® = 03«3 (i.e., no autocorrelation), ® = 0.2513

and ® = 0.5I3. Finally, we consider sample sizes n € {250, 500,1000} .

"We would like to thank an anonymous referee for suggesting this setup.
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We examine the size properties of four different tests using a 5% significance level. The first
one is the joint Wald test (Wjeint) under the null hypothesis that all three slope coefficients are
jointly equal to zero, i.e., Hy : A=(0,0,0) in (26). The other three tests refer to the individual
significance of each regressor. In particular, Wiy r corresponds to the Wald test under the null
hypothesis that the slope coefficient of the unit root regressor is equal to zero, i.e., Hy: A1 =0,
letting the other two slope coefficients free. Similarly, Wy corresponds to the Wald test under
Hp : Az = 0 and Wsiationary corresponds to the Wald test under Hp : Az = 0.

Table 3 presents the finite-sample size of these four Wald tests. For Correlation Set 1 in
the upper Panel, we find that the size of the joint Wald test (Wjoin:) is very close to the
nominal 5% across all autocorrelation structures examined. With respect to the test of individual
significance for the unit root regressor (Wyg), we find a slight oversizing, which peaks around
8%. However, this oversizing becomes almost negligible for the test of individual significance for
the local-to-unity regressor (Wrry), while the corresponding test for the stationary regressor
(Wstationary) exhibits no size distortion. Examining the size properties using Correlation Set 2
in the lower Panel of Table 3, we find no size distortion across these four tests, regardless of the

autocorrelation structure used.
—Table 3 here—

We also examine the power properties of the joint Wald test under the null hypothesis
Hy : A=(0,0,0), as the slope coefficient of each of the three regressors increases. In par-
ticular, Waldg 525 refers to the power of the joint test when, under the alternative, the slope
coefficient of the unit root regressor takes non-zero values (A = % (1,(),()))7 Wald[%g refers to
the power of the joint test when the slope coefficient of the local-to-unity regressor increases
(A= % (0,1,0)), while Waldg %agionary refers to the power of the joint test when the slope coeffi-
cient of the stationary regressor increases (A = % (0,0, 1)) Local alternatives are derived using
be {0,2,4,...,32,40,60,100} with b = 0 corresponding to the size of the test, while we consider
n € {100,250, 500, 1000}.8

Figure 4 presents the power plots of the joint Wald statistic using Correlation Set 1, while

Figure 5 presents the corresponding power plots using Correlation Set 2. We find that in every

8Simulation results for the power properties of the individual significance tests in the presence of multiple
regressors are available upon request.

20



case examined, the joint Wald test has very good power properties, since the rejection rate
monotonically increases as the true value of the corresponding slope coefficient increases. This
holds true for all sample sizes examined. Moreover, the power of the joint Wald test is remarkably
high even for low values of local alternatives for the slope coefficient of the unit root and the

local-to-unity regressors.

—Figures 4 and 5 here—

3. Data and regressors’ degree of persistence

We implement the proposed methodology to test the predictive ability of commonly used finan-
cial variables with respect to excess stock market returns. The examined period is 1927-2012.
The employed dataset is an updated version of the one used in Welch and Goyal (2008).° For our
benchmark predictability tests, we use monthly and quarterly data, while in the Online Appen-
dix we report results for annual data too. Following Welch and Goyal (2008), we use S&P 500
value-weighted log excess returns to proxy for excess market returns. Moreover, we use the fol-
lowing 12 variables as potential predictors: T-bill rate (tbl), long-term yield (lty), term spread
(tms), default yield spread (dfy), dividend-price ratio (d/p), dividend yield (d/y), earnings-
price ratio (e/p), dividend payout ratio (d/e), book-to-market value ratio (b/m), net equity
expansion (ntis), inflation rate (inf) and consumption-wealth ratio (cay). We present the de-
finitions of these variables as well as a list of prior studies that have examined their predictive
ability in the Online Appendix. It should be noted that cay is only available at quarterly and
annual frequency, starting from 1952 for quarterly and 1945 for annual data.

One of the main advantages of the IVX methodology is that, by virtue of its robustness,
it does not require any pre-testing to determine the degree of predictors’ persistence prior to
conducting predictability tests. Pre-testing procedures naturally increase the Type I error of
predictability tests and may well lead to conflicting empirical conclusions. To demonstrate this
point, we report for each regressor in Table 4 the least squares point estimate of the autoregressive
root En from regression (2) using monthly data as well as the results of four unit root tests that

are commonly used as pre-tests: the Augmented Dickey Fuller (ADF) test, the DF-GLS test

The dataset updated up to December 2012 is sourced from Amit Goyal’s website:
http://www.hec.unil.ch/agoyal/
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by Elliott, Rothenberg and Stock (1996), the Phillips-Perron (PP) test as well as the KPSS
test by Kwiatkowski, Phillips, Schmidt and Shin (1992); the lag length for ADF and DF-GLS
is determined by the Bayesian information criterion. It is remarkable how close to unity the
estimated root is for most of the variables: for d/y, d/p and e/p the estimated root is exactly
equal to unity up to three decimal points. The four pre—tests agree on the existence of a unit
root only for lty, d/y and d/p. For the remaining variables, the tests yield contradictory results.
Even for inf, which exhibits a relatively low autoregressive root, the KPSS test would reject the

null hypothesis of no unit root at the 5% level.
—Table 4 here—

Table 5 contains the corresponding results for quarterly data, confirming that these variables
exhibit a very high degree of persistence, even when they are measured at a lower frequency,
and that their autoregressive root is very close to unity, with the exception of inf. Interestingly,
cay also exhibits a very high autoregressive root and the ADF and PP tests would not reject the
null hypothesis of unit root. The evidence provided in the Online Appendix using annual data
is very similar, though the autoregressive coefficients are somewhat lower for some variables.
Overall, neither the conclusions of the pre-tests nor the estimated autoregressive roots alleviate
the uncertainty on the exact degree of persistence of the employed regressors, regardless of the
frequency used. This observation, along with Type I error considerations, motivates further the

use of the proposed IVX econometric framework.

—Table 5 here—

4. Predictability tests

4.1 Univariate regressions

4.1.1 Monthly data We firstly examine the individual predictive ability of each of the em-
ployed regressors using monthly data. Table 6 contains the results for these univariate regressions
using the proposed IVX estimator and the corresponding Wald statistic under the null hypoth-
esis of no predictability. For comparison, we also report: i) the t-ratio under the standard least

squares approach, ii) the 90% Bonferroni confidence interval from the Q-statistic of CY and
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iii) the p-value for the JM statistic. Moreover, we report the correlation coefficient (4) of the

residuals from regressions (1) and (2) as a measure of the regressor’s degree of endogeneity.
—Table 6 here—

Panel A reports the results for the period January 1927-December 2012. Using our test
statistic, we find that the null of no predictability can be rejected at the 5% level only when
the lagged e/p, b/m and ntis are used as predictors; d/y is significant only at the 10% level.
To the contrary, there is no evidence of significant predictive ability for d/e, lty, d/p, tbl, dfy,
tms and inf in the full sample period. Comparing our findings with the other test statistics,
there are important differences with respect to which predictors are significant and at what
level. Standard least squares inference indicates that d/y is significant at the 5% and that ntis
is significant only at the 10% level. More interestingly, the Q-test of CY fails to report the
significance of e/p even at the 10% level. Calculating 95% Bonferroni confidence intervals for
the Q-test in unreported results we find that only ntis is significant at the 5% level. These
findings are in line with our simulation results for the size properties of the Q-test, where we
documented that it tends to underreject for large sample sizes (n = 1,000) and for moderate to
high degrees of endogeneity, such as the one estimated for e/p (§ = —0.76). Finally, the JM test
does not find e/p or b/m to be significant predictors, while it does so for tbl and dfy, which are
insignificant according to our test.

Panel B of Table 6 reports the corresponding results for the period after 1952. This subperiod
is examined for two reasons. Firstly, the term structure variables (tbl, tms and lty) are thought
to be more informative since the Fed abandoned its policy of pegging the interest rate (1951
Treasury Accord). Moreover, cay becomes available at quarterly frequency during this period.
Secondly, prior studies (see e.g., CY) have found that the evidence of predictability has weakened
in more recent sample periods, and hence it can be attributed to early periods when such
patterns were not documented. The proposed testing methodology can shed further light on
this conjecture.

In fact, the predictability evidence almost entirely disappears in the post—1952 period. The
IVX-Wald test indicates that only inf is significant at the 5% level. Moreover, tbl and tms are
significant at the 10% level, supporting the argument that the term structure variables may have

become more informative after 1952. Similar is the evidence based on the Q-test of CY, with
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the main difference that their test additionally finds d/y to be marginally significant at the 10%
level. More striking are the differences with least squares inference, according to which both d/y
and d/p are significant at the 10% level, while tbl is significant at the 5% level, demonstrating
its tendency to overreject the null of no predictability. Using the JM test would also lead to
conclusions that are considerably different from ours. Most importantly, this test indicates d/y
as a significant predictor, while it fails to do so for tbl and inf. Overall, our results support the

argument that predictability has considerably weakened, if not disappeared, after 1952.

4.1.2 Quarterly data We subsequently estimate the univariate predictive regressions using
quarterly data and we report the corresponding results in Table 7 for the full sample period
(Panel A) and the post—1952 period (Panel B), respectively. The results are very similar to
the ones we derived using monthly data. In particular, the IVX-Wald test indicates that in
the full sample period, e/p, b/m and ntis are again found to be significant predictors at the
5% level, while we also report significance for d/p at the 10% level. Standard least squares
inference would point to similar conclusions, with even lower p-values due to the tendency of the
t-test to overreject. More striking is the comparison with the inference derived from the Q-test.
In particular, the latter fails to find significance for either e/p or b/m even at the 10% level,
demonstrating again a tendency to underreject for moderate to high values of §. The inference
derived from the JM test is also very different from ours. In particular, the JM test fails to

report significance for e/p and d/p, while it indicates d/y and dfy as strongly significant.
—Table 7 here—

For the post—1952 period we find that, according to the IVX-Wald test, only tms out of the
previously used variables remains significant at the 10% level. The rest of the tests also show
that predictability has overall weakened in this subperiod, but they additionally find some other
variables to be significant predictors, at least at the 10% level. The most interesting finding
is that cay, which becomes available after 1952, is a highly significant predictor across all tests
considered, including our Wald test. This striking finding corroborates the results of Lettau and
Ludvigson (2001) for the updated sample period that we examine.

Taken together with the corresponding univariate results for annual data reported in the On-

line Appendix, the Wald test indicates that there is significant evidence of in-sample predictabil-
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ity for e/p, b/m and ntis in the full sample period, and weaker evidence for the dividend-based
ratios. However, this evidence almost entirely disappears during the post—1952 period, with the
exception of some rather weak evidence for the term structure variables (tms and tbl). The only

variable that is found to be strongly significant in the post—1952 period is cay.

4.2 Multivariate regressions

The previous Section considered univariate predictability tests. However, it is common practice
to employ multiple regressors and to assess their joint significance; this approach is informa-
tive for market efficiency tests since predictability should be assessed with respect to the entire
information set, not each variable in isolation (see also Cochrane, 2011, for a discussion of
the multivariate challenge in predictability tests). Moreover, multivariate predictive regres-
sions are widely used in VAR systems for intertemporal asset pricing tests (e.g., Campbell
and Vuolteenaho, 2004) as well as in conditional performance evaluation studies (e.g., Ferson,
Sarkissian and Simin, 2008). Additionally, from a theoretical point of view, recently developed
present value models (see e.g., Ang and Bekaert, 2007, and Golez, 2014) suggest that d/p alone
cannot capture the variation in expected stock returns due to stochastic discount rates and/or
dividend growth, and hence it should be used jointly with other predictors.

Given the importance of multivariate predictive systems, it is unfortunate that the recent
methodological contributions that correct for the bias arising in least squares inference are
developed for univariate regressions only. The notable exception is the iterative procedure of
Amihud et al. (2009), which is based on the augmented regression method of Amihud and
Hurvich (2004) and accommodates multiple regressors in a single-horizon predictive setup under
the restriction that the predictors are stationary. Their procedure yields a reduced-bias estimator
and the corresponding test statistic is shown to have good size properties, which, however,
deteriorate as the persistence of the predictors approaches the nonstationarity boundary.

On the other hand, our instrumental variable approach introduces an easy-to-implement
Wald statistic, enabling us to conduct valid inference regardless of the dimensionality of the
predictive system and for all known types of regressors’ persistence, from strictly stationary to
unit root processes, while it is also applicable to long-horizon predictive systems. The proposed

Wald test allows us to examine the joint as well as the individual significance of the regressors
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used in a multivariate system. In particular, to test their joint significance, we compute the
Wald statistic (19) under the null hypothesis that all slope coefficients are equal to zero, i.e.,
Hy : A = 01y, while the individual significance of each predictor is evaluated under the null
hypothesis that the corresponding slope coefficient is equal to zero, i.e., Hy: A; = 0.

We utilize this test to re-examine the predictive ability of certain combinations of regressors
that were found to be significant in prior studies and they are motivated from either a theoretical
or an empirical point of view. In particular, we use the following combinations: i) d/p and
tbl (Ang and Bekaert, 2007), ii) d/p, tbl, dfy and tms (Ferson and Schadt, 1996), iii) d/p
and b/m (Kothari and Shanken, 1997), iv) d/p and d/e (Lamont, 1998) and v) e/p, tms and
b/m (Campbell and Vuolteenaho, 2004). Additionally, we follow a general-to-specific statistical
approach to come up with the best set of predictors. In particular, starting with a base system
that includes d/p, e/p, tbl, tms, dfy and ntis, we eliminate in each estimation round the variable
exhibiting the lowest (and insignificant) value of individual Wald statistic. This process is

repeated until all remaining variables are individually significant at the 10% level or lower.!”

4.2.1 Monthly data Table 8 reports the results for monthly data. Panel A contains the
results for the full sample period. Interestingly, we find that none of the examined combinations
leads to joint significance at the 5% level. Only the combination of e¢/p, b/m and tms is jointly
significant at the 10% level, but none of these predictors’ coefficients is individually significant.
It is also noteworthy that d/p is individually insignificant in all combinations examined, apart
from the case where it is used jointly with d/e. This finding casts more doubt on its predictive
ability over short-horizon returns. On the other hand, the general-to-specific approach leads to
a rather interesting finding: e/p and tbl are both jointly and individually significant at the 5%

level.

—Table 8 here—

Panel B reports the corresponding results for the post—1952 period, leading to very similar
conclusions. None of the five combinations considered is found to be jointly significant and d/p is
individually insignificant in every case. Only tbl and tms are found to be individually significant

in some cases, confirming that term structure variables may be indeed more informative in the

10We would like to thank the Editor for suggesting this approach.
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post—1952 period. The general-to-specific approach yields again the most interesting result: e/p
and tbl are jointly and individually significant during this subperiod too. As a robustness test,
we have alternatively included b/m instead of d/p in the base system; unreported results show
that we still end up with e/p and tbl being the only two individually and jointly significant

predictors in both periods.

4.2.2 Quarterly data We repeat the previous analysis using quarterly data and we report
these results in Table 9. Panel A contains the full sample period results. We find that combina-
tions that include b/m lead to joint significance, but the regressors’ coefficients are insignificant.
Moreover, we find that d/p is individually significant in some combinations, but none of these
yields joint significance. On the other hand, according to the general-to-specific approach, e/p,

tbl and ntis are both individually and jointly significant.
—Table 9 here—

Panel B reports the corresponding results for the post—1952 period. Interestingly, we find
that none of these five combinations yields joint significance. Since cay becomes available in this
subperiod, we additionally examine the combination of d/p, d/e and cay, which was considered
in Lettau and Ludvigson (2001). In fact, we find that this combination and cay’s coefficient are
significant at the 1% level. Moreover, we also include cay in the base system for the general-to-
specific approach, given its strong significance in univariate tests. This approach yields a highly
significant combination of e/p, tbl, cay and dfy for this subperiod.

Taken together, the multivariate results for monthly and quarterly data show that commonly
used combinations of these regressors have limited predictive ability, especially in the post—1952
period. However, a general-to-specific approach indicates that the combination of e/p and tbl is
highly significant and robust to the choice of data frequency and the examined period. Finally,
these results confirm that cay is a highly significant predictor in the post—1952 period and this

significance is not subsumed by other commonly used variables.

5. Long-horizon predictive regressions

The previous tests examined short-horizon predictability using 1-period ahead returns. A re-

lated debate in the literature refers to the existence of long-horizon predictability. In particular,
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a number of studies have found that the predictive ability of certain financial variables becomes
stronger as the horizon increases (see inter alia the surveys of Cochrane, 1999, and Campbell,
2000). On the other hand, some recent studies cast doubt on this prevailing view (see Valkanov,
2003, Torous et al., 2004, Ang and Bekaert, 2007, Boudoukh et al., 2008 and Hjalmarsson, 2011).
In particular, Ang and Bekaert (2007) find no evidence of long-horizon predictability using stan-
dard errors based on the reverse regression approach of Hodrick (1992), which removes the
moving average structure in the error term induced by summing returns over long horizons, and
hence retains the correct size, as compared to Hansen-Hodrick (1980) and Newey-West (1987)
standard errors that lead to severely oversized test statistics.!! Moreover, Valkanov (2003) and
Boudoukh et al. (2008) show that in the presence of highly persistent regressors, predictability
may artificially emerge in standard least squares regressions as the horizon increases. We con-
tribute to this debate by extending the proposed IVX-Wald test to accommodate long-horizon
predictive regressions and conducting the corresponding empirical tests.'? Section 5.1 develops
a long-horizon IVX-Wald test, Section 5.2 examines the finite-sample properties of the newly

developed Wald test, while Section 5.3 discusses the corresponding empirical results.

5.1 Long-horizon IVX inference

Long-horizon predictability tests are typically based on estimators derived from regressing the
K-period cumulative stock return y; (K) on a lagged predictor z;—; and an intercept as in the

following fitted model:
ye (K) = py+ Azea +my, t€{l,...,n—K+1} (30)

with y; (K) = Zfi 61 Yt+i, while the DGP characterizing the true relationship between y; and
x¢ continues to be given by (1). For brevity, we introduce the notation vy (K) = Zfi 61 vy for
any sequence (vt),~; and let ng =n — K + 1.

It is clear that the accumulation of predicted variables on the left side of (30) generates
additional correlations that are not present in short-horizon regressions and affect the stochastic

properties of long-horizon estimators. To fix ideas, assume temporarily that the intercepts p

"'The recent study of Wei and Wright (2013) extends the reverse regression approach of Hodrick (1992) to a
wider range of null hypotheses even when the predictors are local-to-unity processes.
2We would like to thank the Editor for suggesting the extension of IVX methodology to the long-horizon case.
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in (1) and ¢ in (30) are equal to zero. Then, the OLS estimator of A from (30) is given by
Aors (K) = 1 v (K) 2y (7% xt_lngl)_l. Using the DGP (1), it is easy to see that the
above OLS estimator is inconsistent for K > 1:

-1

ng ng ng
AOLS (K) = A Z Tt—1 (K) 1‘;_1 + ZEt (K) 1‘2_1] <Z l‘t11‘2_1> 5
t=1 t=1 t=1

the inconsistency occurring because y ;% x;—1 (K)}_; has the same order of magnitude as
Yok @1y, for fixed horizon K and dominates Y ;% zy_12;_; asymptotically when K — oo.

This imbalance can be easily corrected by modifying the OLS estimator:

1
ng

Amors ( Zyt )Ty (Z -1 (K) 902-1) : (31)
t=1

While this modified OLS estimator is consistent, the limit distribution of A,,ors (K)—A (under
suitable normalisation) will not be mixed Gaussian in the case of unit root and local-to-unity
regressors. Consequently, inference procedures based on flmo s (K) will not be valid across the
range of persistence classes P(i)-P(iv) of Section 1, leading to erroneous empirical conclusions
in the case of misspecification of regressor persistence. IVX methodology can be adapted to
deliver robust inference in long-horizon predictive regression systems. The key idea is the same
as in the short-horizon case: given a consistent least squares estimator, the IVX estimator is
constructed as a feasible instrumental variables estimator that replaces the regressor z; by the

IVX instrument Z; in (31):

ng ng -1
Avx (K)=> i (K)z_, (Z -1 (K) 52_1> :
= =1

In the general case where the intercept terms g in (1) and yi ¢ in (30) are non-zero, a standard
result on partitioned regression yields that least squares estimation of A from the regression (30)

is equivalent to least squares estimation of A from the regression:
Yt (K) = Yng (K) = A(24-1 — Tpp—1) + 0 t€{l,....,nK} (32)

where G, (K) = ngt S0 v (K) and Zp,—1 (K) = ngt 1% 241 (K) denote the sample
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means of y; (K) and z;—; (K) and @, and Z,—1 denote the usual sample means of y; and

w1 based on the first nx observations, respectively. We define the data matrices X, =

[:C6 o f;lK—17 "'733;1;(—1 - jInK—l],a Z(K) = [26 (K) ) “'72;”(—1 (K)],,
Y(K) = [ (K) = G (K)o e (K) = Gy (K)]'
X(K) = [ap(K) = T 1 (K)ot 1 (K) = 5,y (K)]'

3!

and an,l = [26, ey an_J/, where, as before, underlying indicates demeaning. The modified

OLS estimator from (30) (equivalently from (32)) can be expressed as:

Amors (K) =Y (K) X,y [X (K) X, 1] "

ng—1
and the corresponding IVX estimator of A is given by:

- . - -1

Apvx (K) = YAKY Zuger | XK Zogea] - (33)

The asymptotic behavior of the normalized and centred IVX estimator in (33) is summarized
by Theorem B in the Appendix; asymptotic mixed Gaussianity is preserved irrespective of the
degree of persistence of the predictor variable in (2), as long as the rate of growth of the horizon

K is slower than that of the sample size n. This requirement is presented formally below.

Assumption H. The horizon K may be a fived integer or a sequence (Ky), oy that increases
to infinity slower than the sample size n: K,/n — 0 as n — oo.

As in the short-horizon case, the asymptotic mixed normality property of the long-horizon
IVX estimator Ay x (K) implies that the associated IVX-Wald test statistic will have a standard
chi-squared limit distribution across the whole range of empirically relevant persistence classes
P(i)-P(iv). In particular, we propose the following IVX-Wald statistic for testing the set of linear

restrictions (18) in long-horizon predictive regression systems:

WIVX (K) = [HVGCA[VX (K) - h]/QI_-I,lK [HVGCA[VX (K) —h (34)

30



where

Qui = H[(Z,’LKX(K)) 1®Im] MK[<X(K)’Zn_K>

A A~

Mg = Z(K)Z(K)®See — g Zng-1(K) 2,1 (K) ® Qpy

1
®Im] H'

Znge—1 (K) = ngt 7% %1 (K) and Qpyy is defined in (21).

Theorem 2. Consider the model (1)-(3) under Assumption INNOV with (9) and H. Then,
the IVX-Wald statistic in (34) for testing (18) satisfies

Wivx (K) = x*(q) asn— oo

under Hy for the following classes of predictor processes xy in (2):
(i) P(i)-P(iv) under Assumption INNOV (i)
(ii) P(i)-P(iv) under Assumption INNOV (ii) when K — oo
(iii) P(1)-P(iii) under Assumption INNOV (ii) when the horizon parameter K is fized.

Theorem 2 shows that, under Assumption H, the robustness property of IVX methodology
extends to long-horizon predictive regressions. Note that when K = 1, the long-horizon IVX
estimator (33) and the associated IVX-Wald statistic (34) reduce to their short-horizon counter-
parts (17) and (19), respectively. Note also the robustness that the IVX-Wald statistic exhibits
to conditional heteroskedasticity for purely stationary regressors when K — oo: this is due to
the persistence that the horizon K induces in the predictive regression; see the discussion in the

penultimate paragraph of Section 1.

5.2 Finite-sample properties

In this Section, we examine the finite-sample properties of the long-horizon Wald statistic in
(34) that corresponds to the long-horizon predictive regression in (30). For this Monte Carlo
study, we use the DGP specified in (22)—(24) for the univariate case. In particular, we consider
the following parameter values: C' € {0,—5,—10,—15,—-20,-50}, 6 € {—0.95,-0.5,0}, n €

{100, 500, 1000} and ¢ = 0. For sample size n = 100, we consider predictive horizons K =
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2,3,4,5, for n = 500 we consider K = 4,8,12,20, while for n = 1000 we use K = 4,12, 36, 60.
Table 10 presents the finite-sample size of the long-horizon Wald statistic. These simulation
results show that the size of the proposed test is remarkably close to the nominal 5% level for

all cases considered.
—Table 10 here—

We also examine the power properties of the long-horizon Wald statistic, using local alter-
natives A = % with b € {0,2,4,..,32,40,60,100}. Power plots for sample size n = 1000 and
horizons K = 12, 36,60 as well as for sample size n = 500 and horizons K = 4,12,20 are pre-
sented in the Online Appendix.™® In sum, these plots show that for all horizons considered, the
power of the statistic rapidly increases as the true value of A increases. Moreover, in each case,
the power of the statistic decreases as the predictive horizon increases, but this decrease is very

small for highly persistent regressors.

5.3 Empirical results

Table 11 reports the results from long-horizon univariate predictability tests using monthly data.
In the full sample period (Panel A), we find no evidence that predictability becomes stronger
as the horizon increases, with the exception of tms. To the contrary, the predictive ability of
e/p and b/m weakens, being significant only at the 10% level when we examine horizons longer
than 12 and 36 months, respectively. Only tms and ntis are significant at the 5% level when we
examine a 60-month horizon. Regarding d/y and d/p, these are not significant at the 5% level
regardless of the examined horizon.'* In the post-1952 period (Panel B), predictability almost
entirely disappears, especially for horizons beyond 24 months. We find that only d/e becomes

significant at long horizons, while tms remains marginally significant at the 10% level.
—Table 11 here—

Table 12 reports the corresponding long-horizon tests using quarterly data. In the full sample

period (Panel A), predictability becomes weaker as the horizon increases. Interestingly, e/p, b/m

13The corresponding power plots for n = 100 are available upon request.

YT the contrary, in unreported results we find that using Newey-West or Hansen-Hodrick standard errors to
calculate least squares t-ratios, d/y and d/p (as well as most of the other variables) would erroneously appear as
highly significant for horizons of 12 months or longer. The findings are similar when we consider quarterly data.
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and ntis, which were found to be strongly significant in predicting 1-quarter ahead returns (see
Table 7), become less significant as the horizon increases and they are eventually insignificant
at the 20-quarter horizon; d/p remains significant at the 10% level for all horizons considered,
while tms becomes marginally significant at very long horizons. In the post—1952 period (Panel
B), there is no evidence of predictability with three exceptions: tms remains significant but only
at the 10% level, d/e becomes marginally significant beyond 8 quarters, while cay is the only
variable that remains significant at the 5% level for all horizons examined. Similar is the pattern

of the corresponding results using annual data that are reported in the Online Appendix.
—Table 12 here—

In sum, our evidence is in line with the results of the above cited studies that cast doubt on
the ability of commonly used variables to predict stock returns at long horizons, especially in
the post—1952 period. We actually find that, if anything, predictability is generally weaker, not
stronger, as the horizon increases.

Table 13 presents the results for long-horizon predictability tests with multiple regressors.
We present only the combinations of regressors that were found to be both individually and
jointly significant under the general-to-specific approach described in Section 4.2 and reported
in Tables 8 and 9, using 1-month and 1-quarter ahead returns, respectively. Panel A reports the
results for monthly data. In the full sample period, we find that while e/p remains individually
significant, tbl becomes insignificant as the horizon increases. Their joint predictive ability
remains significant, but only at the 10% level for horizons beyond 12 months. For the post—
1952 period results are more striking: e/p and tbl are neither individually nor jointly significant

beyond 12 months.
—Table 13 here—

Using quarterly data in Panel B, we get a similar pattern. For the full sample period, only
e/p remains individually significant for all the examined horizons, while neither tbl nor ntis
are significant for longer than 8-quarter horizons; the joint significance of these three variables
becomes weaker as we increase the predictive horizon and eventually disappears at the 20-quarter
horizon. For the post—-1952 period, we find that at horizons longer than 4 quarters, only cay

is individually significant at the 5% level, driving the joint significance of the corresponding
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multivariate system. Overall, our evidence is in broad agreement with the results of Ang and
Bekaert (2007), who found that tbl can predict future stock returns within a multivariate setup

only at short (less than 1-year) horizons.

6. Conclusion

This study revisits the popular issue of stock return predictability via lagged financial variables.
We conduct a battery of predictability tests for US stock returns during the 1927-2012 period,
proposing a novel methodology, termed as IVX estimation, which is robust to the time series
properties of the employed regressors. The uncertainty regarding the order of integration of these
predictive variables has been characterized as a main source of concern for invalid inference,
especially in the presence of endogenous regressors (see Stambaugh, 1999, and CY); the robust
methodology we propose successfully addresses this concern. In univariate tests, we find that the
earnings-price and book-to-market value ratios as well as net equity expansion are significant
predictors of 1-period ahead excess market returns. However, this evidence almost entirely
disappears in the post—-1952 period. Only the consumption-wealth ratio is found to be strongly
significant in this subperiod.

Apart from robustifying inference in predictability tests, this novel methodology presents two
additional, particularly attractive features. Firstly, it leads to standard chi-squared inference,
and hence the construction of Bonferroni-type confidence intervals is avoided. Such a simplifi-
cation is mostly welcome for practical purposes, given the large number of predictive regressors
that have been employed in prior literature. Secondly, the IVX estimation methodology is ap-
plicable to multivariate systems of both regressors and regressands. This facility allows us to
test a wide range of predictability relationships. Most obviously, we can test for the joint ability
of a set of regressors to predict stock market returns. While this issue was the main motiva-
tion of the early studies in the literature (e.g., Fama and French, 1989), most of the recently
suggested econometric methodologies have been restricted to setups with a scalar regressor (see
Torous et al., 2004, CY, JM, and Hjalmarsson, 2011). Our multivariate tests document that the
combination of the earnings-price ratio and T-bill rate is highly significant and robust to the
choice of data frequency and examined period.

Interestingly, the proposed testing procedure can be extended to long-horizon predictive
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regressions. We develop the relevant test statistic and we show that it exhibits very good finite-
sample properties. Using this newly developed statistic, our long-horizon tests document that,
if anything, predictability becomes weaker, not stronger, as the horizon increases. Only the
consumption-wealth ratio remains strongly significant for all horizons examined. This evidence
is in agreement with the results of recent studies casting doubt on the prevailing view that
predictability becomes stronger as the horizon increases (see inter alia Ang and Bekaert, 2007,
and Boudoukh et al., 2008).

Concluding, the proposed IVX estimation methodology improves testing in predictive re-
gressions both by extending the range of testable hypotheses and by robustifying inference with
respect to misspecification of regressors’ persistence. This novel econometric methodology can
prove useful for predictability tests in other asset classes too. Successful implementation can
shed new light on whether bond yields and exchange rate fluctuations are predictable via pub-
licly available information. Since predictability tests in these asset classes also rely on persistent
regressors with uncertain order of integration, this robust methodology can minimize the risk of

distorted inference due to incorrect time series modelling.
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Appendix: Asymptotic mixed Gaussianity of the IVX estimator

This Appendix provides a summary and discussion of the asymptotic behavior of the normalized
and centred IVX estimator Ay x in (17) and Ajyx (K) in (33) arising from short-horizon and
long-horizon predictive regressions, respectively. The key property of Apyx and Apyy (K)
that ensures robustness of the IVX procedure and a chi-squared limit distribution for the IVX-
Wald test statistic is asymptotic mixed normality. Theorem A below shows that asymptotic
mixed normality applies to all predictors belonging to the classes P(i)-P(iv) of autoregressive
processes irrespective of their persistence properties. Theorem B shows that the asymptotic
mixed normality property of the IVX estimator extends to long-horizon predictive regression

systems. We employ the shorthand notation a A b = min (a,b) and a V b = max (a, b).

Theorem A. Consider the model (1)-(3) under Assumption INNOV with instruments Z; de-
fined by (4) and (5). Let B, be a r-variate Brownian motion with covariance matrix Qyy,

=Jye LeClt=9) By, (s) be an Ornstein-Uhlenbeck process and let

1 1
B, ()= Bt~ [ Buar Lo = o) = [ e

denote the demeaned versions of By, and Jo. The following limit theory as n — oo applies for

the estimator Apyx in (17):

i) when B<aAnl n#vec = MN \if_l ,C’V C,U 1oy
( ) B Y uy 2VC, Yz ¥y e
(ii) when a € (0,5), n 5 vee < A) N (0, VC ® Xee)

14+a

(iii) when a =0 >0, n 2 Vec(fln/x - A) =N (O,V*C*lVCC*l V) 'te ZEE)
(iva) when o = 0, \/mvec (AWX - A) = N (0, (Bzonzp,) ' ® 255) under INNOV/(i)
(ivy) when a =0, fvec( VX — A) = N (0, V) under INNOV (ii)

where xo; = Z?o:() Rjut_j with R = I, + C is a stationary version of xy when a =0,

the covariance matrices Vo, Vo, , V and Vi are given by

o0 [e.9] o0
Ve = / Qe Cdr, Vo, = / €% Qe dr, V = / e"Vee Y dr,
0 0 0
Vo = ([Emo,lwal]*l ® Im> E (x071x671 ® 825’2) ([E:c()’la:g,l]*l ® Im) (35)
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and the random covariance matriz W, is given by

Quu, + fol B,dB,, under P(i)
Viu =4 Qs + fol JcdJ} under P(ii)
Quu + Vel under P(iii).

The proof of Theorem A can be found in the Online Appendix.

Remarks A.

(a)

Theorem A establishes asymptotic mixed normality of the IVX estimator in predictive
regression systems the validity of which is invariant to the persistence properties of the
generating mechanism of the predictor process x;. The fact that asymptotic mixed nor-
mality extends over the entire range P(i)-P(iv) of autoregression-induced persistence is
the key property that ensures robustness of the IVX procedure. The varying rates of
convergence and expressions of the (possibly random) limit variance of the IVX estimator
along different persistence classes do not affect self-normalized test statistics such as that
of the Wald test considered in (19): mixed normality will deliver standard chi-squared

asymptotic inference for IVX based self-normalized quadratic forms.

Theorem A shows that the presence of an intercept in the model does not affect the
main asymptotic property of IVX estimation, mixed Gaussianity. This, however, is a
first-order asymptotic result. In finite samples, the effect of estimating the intercept may
become manifest for predictor processes x; exhibiting high degree of persistence and strong
correlation with the innovations e; of the predictive equation (1). In this case, represented
by part (i) of Theorem A, the sample moment that drives mixed normality can be written

as

The first term on the right hand side has a N (0, Ve, ' ZEE) limit distribution which
produces the mixed normal limit result for the IVX estimator in part (i) of Theorem A.

Using part (i) of Lemma A1l in the Online Appendix, the second term can be analyzed as
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follows:

1-B8_ _, _CZ_I 1 - "B;L _1-8 _1-«a
nE 1= g e | o > e oz = O <" 72 ) (36)
2 t=1

nzn

We conclude that the term in (36) is asymptotically negligible across the whole range
P(i)-P(iv) of predictor processes but its finite-sample contribution depends simultaneously
on three factors: the degree of regressor persistence «; the correlation between innova-
tions €; and u;; and the choice of £ in the instrumentation procedure. The finite-sample
impact of the remainder term in (36) is more prominent for highly persistent regressors:
persistence of the unit root and local-to-unity type P(i) and P(ii) results to a finite-sample
contribution of exact order O, (n_¥) in (36); the magnitude of this finite-sample con-
tribution declines continuously as the persistence parameter « drives the predictor process
towards stationarity and assumes the minimal rate O, (n_Hﬁ/ 2) for stationary predictors
belonging to the class P(iv). Strong (positive or negative) correlation also exacerbates the
finite-sample effect of estimating the intercept in (1): by a simple application of the central
limit theorem to (36), it is clear that a unit root predictor z, = Y ;" ; u; induces finite-
sample bias of the form —C 1n_%95u, the magnitude of which depends on the long-run
covariance )., between the innovations of (1) and (2), defined in (12). All finite-sample
effects (irrespective of their source) are simultaneously removed by the finite-sample cor-
rection (20) on the self-normalizing component of the IVX-Wald statistic. This correction
employs a weighted demeaning of the IVX instruments by a matrix that depends on Qe
in a way that balances the finite-sample contribution of (36) for all persistence and corre-
lation combinations conforming to P(i)-P(iv) and Assumption INNOV and all admissible

choices of the IVX tuning parameter [3.

Theorem B. Consider the model (1)-(3) under Assumption INNOV with (9) and Assumption
H. The limit distribution as n — oo of the normalized and centred long-horizon IVX estimator

in (33) is mized Gaussian of the following form:

1+(anp)

(i) when K/n® —0,n" 2z vec|Apyx (K) — A] = MN (0,Q1 ® X.e),
AN -
Q1= (V5l) CVe.Clt if B<a; Qu=Vg" if a <
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(ii) when K/n® — 0, K/n” — oo, v/nKvec [/Nl]vx (K)— A] = MN (0,Q2 ® ),
AN -
Q2= (ih) Qutugt
(iii) when K/n® — oo, K/n? — 0, \/n/KnO‘vec[flIVX (K)— A} = N (0,Q3 ® Xec),
Q3 = CV'C 1,0 WEC if a>0; Q3 = (Gloe) O 7100, C71GL ) if =0

(iv) when K/n®F — oo, nl/2te—(aVh)/2yec [AIVX (K) — A} = N (0,Q4®X..),
Qi =2V1if B<a; Qu=20V'C W, CWICif 0 < a< B;if a=0Q4 =
2(Gole) C Ve, 071G .

When o =0 and K 1is fized:

(Vo) V/nvec [AIVX (K)— A} = N (0,Q5 @ X)) under INNOV (1),
1\ k-1 |
Qs = (Gﬁvo,K) Zi,j:O Lo (i = ) G ook
(vy) +/mvec [AW ¥ (K) - A} = N (0, (G;O{'K ® Im> Wo.x (G;O{ X ® Im>> under INNOV (i),

K-1 / /
WO,K = Zi,j=0 E (xO,ix(),j & EKEK)

where Vo, Vo, and \TJW are defined in Theorem A, Ty, () = E (xo,txf),t_j) 1s the autocovariance
Junction of the process xo; defined in Theorem A, and Gy x = Z]K;OI Iz (4)-

The proof of Theorem B requires the development of a new limit theory for sample moments
arising from long-horizon predictive regressions and joint control of the asymptotic growth rates
for n®, n® and K. The details of this asymptotic development are lengthy and highly non-trivial

and can be found in Kostakis, Magdalinos and Stamatogiannis (2014).
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Table 1

Finite—sample sizes when there is no autocorrelation (¢ = 0) in the residuals of the autoregression

This table presents finite—sample sizes, testing the null hypothesis H,: A= 0 versus the alternative H, : A= 0 in (22) when there is no autocorrelation in the residuals of the

autoregressive equation, i.e., ¢ =0 in (24). Wy s corresponds to the rejection rate for the Wald statistic, defined in (19), with 5% nominal size, Qo s corresponds to the rejection rate
resulting from the 95% confidence interval for the Campbell and Yogo (2006) Q-test and JMg s corresponds to the rejection rate for the ) . statistic of Jansson and Moreira (2006).

Results are reported for different degrees of correlation between the residuals of regressions (22) and (23), 6 =—0.95, —0.5, 0, 0.5 and 0.95, different sample sizes n= 100, 250, 500
and 1,000 and for different local-to-unity parameters C= 0, =5, —10, —15, —20 and —50, which in each sample size case correspond to different autoregressive roots (R,) reported in the
third column. The reported results are based on the Monte Carlo simulation described in Section 2.1 and the average rejection rates are calculated over 10,000 repetitions.

0=-0.95 0=-0.50 0=0 0=0.50 0=0.95

n c Ry Wo.05 Qo.os IMo 0 Wo.os Qo.os IMo 0 Wo.05 Qo.os IMo 05 Wo.os Qoos  IMoos  Woos  Qoos  IMoos
100 0 1.000 0.067 0.055 0.048 0.064 0.044 0.062 0.051 0.050 0.436 0.063 0.042 0.060 0.063 0.054 0.058
-5 0.950 0.072 0.061 0.046 0.060 0.039 0.046  0.055 0.050 0.192 0.057 0.037 0.052 0.070 0.062 0.044

—-10 0.900 0.066 0.068 0.030 0.060 0.039 0.032  0.059 0.052 0.170 0.056 0.039 0.040 0.065 0.064 0.028

—20 0.800 0.063 0.088 0.066 0.056 0.044 0.068  0.051 0.045 0.144 0.057 0.042 0.068 0.062 0.085 0.070

=50 0.500 0.058 0.257 0.150 0.050 0.095 0.058 0.058 0.054 0.148 0.054 0.094 0.048 0.055 0.257 0.148

250 0 1.000 0.060 0.051 0.062 0.053 0.036 0.054 0.050 0.050 0.510 0.057 0.038 0.042 0.057 0.046 0.052
-5 0.980 0.062 0.047 0.036 0.056 0.034 0.048  0.050 0.050 0.208 0.052 0.031 0.088 0.062 0.046 0.028

—-10 0.960 0.059 0.050 0.042 0.055 0.032 0.052 0.051 0.048 0.158 0.048 0.030 0.086 0.061 0.053 0.042

—20 0.920 0.057 0.062 0.040 0.050 0.032 0.036  0.052 0.049 0.128 0.054 0.033 0.088 0.059 0.059 0.034

=50 0.800 0.054 0.169 0.318 0.050 0.050 0.038  0.055 0.052 0.116 0.053 0.054 0.040 0.055 0.166 0.342

500 0 1.000 0.052 0.039 0.042 0.053 0.038 0.046  0.049 0.048 0.582 0.051 0.036 0.072 0.059 0.043 0.048
-5 0.990 0.062 0.049 0.036 0.051 0.030 0.038 0.051 0.048 0.258 0.052 0.032 0.040 0.064 0.050 0.040

—-10 0.980 0.057 0.044 0.036 0.055 0.031 0.036  0.049 0.049 0.200 0.054 0.033 0.040 0.060 0.047 0.032

—20 0.960 0.055 0.049 0.050 0.054 0.029 0.042 0.051 0.051 0.178 0.049 0.028 0.048 0.056 0.049 0.054

=50 0.900 0.052 0.113 0.524 0.052 0.037 0.054 0.048 0.045 0.176 0.051 0.037 0.054 0.054 0.114 0.488

1000 0 1.000 0.055 0.042 0.038 0.047 0.034 0.038 0.051 0.049 0.646 0.052 0.035 0.032 0.056 0.042 0.046
-5 0.995 0.059 0.047 0.040 0.051 0.030 0.046  0.052 0.051 0.334 0.055 0.031 0.034 0.061 0.048 0.042

-10 0.990 0.059 0.046 0.038 0.052 0.030 0.050 0.051 0.048 0.270 0.054 0.032 0.050 0.055 0.046 0.046

—20 0.980 0.058 0.047 0.042 0.057 0.031 0.034  0.049 0.047 0.222 0.053 0.029 0.040 0.060 0.048 0.036

-50 0.950 0.052 0.074 0.606 0.050 0.032 0.028  0.049 0.048 0.194 0.049 0.029 0.030 0.056 0.069 0.600
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Table 2

Finite—sample sizes with autocorrelation coefficient ¢ = 0.5 in the residuals of the autoregression

This table presents finite—sample sizes, testing the null hypothesis H, : A= 0 versus the alternative H, : A= 0 in (22) when the autocorrelation coefficient in the residuals of the

autoregression (23) is ¢ =0.5. Wy s corresponds to the rejection rate for the Wald statistic, defined in (19), with 5% nominal size, Qg s COrresponds to the rejection rate resulting
from the 95% confidence interval for the Campbell and Yogo (2006) Q-test and JMq o5 corresponds to the rejection rate for the »_ . statistic of Jansson and Moreira (2006). Results

are reported for different degrees of correlation between the residuals of regressions (22) and (23), 6 =—0.95, —0.5, 0, 0.5 and 0.95, different sample sizes n= 100, 250, 500 and
1,000 and for different local-to-unity parameters C= 0, —5, —10, —15, =20 and —50, which in each sample size case correspond to different autoregressive roots (R,) reported in the
third column. The reported results are based on the Monte Carlo simulation described in Section 2.1 and the average rejection rates are calculated over 10,000 repetitions.

0=-0.95 0=-0.50 0=0 0=0.50 0=0.95

n c Ry Wo.05 Qo.os IMo 0 Wo.os Qo.os IMo 0 Wo.05 Qo.os IMo 05 Wo.os Qoos  IMoos  Woos  Qoos  IMoos
100 0 1.000 0.072 0.054 0.110 0.066 0.044 0.110 0.050 0.051 0.394 0.061 0.039 0.118 0.073 0.054 0.108
-5 0.950 0.072 0.053 0.148 0.063 0.040 0.056  0.053 0.049 0.162 0.062 0.037 0.050 0.073 0.053 0.136

—-10 0.900 0.068 0.047 0.156 0.060 0.036 0.046  0.054 0.050 0.124 0.061 0.034 0.088 0.071 0.052 0.138

—20 0.800 0.063 0.059 0.140 0.055 0.032 0.038 0.056 0.051 0.094 0.056 0.033 0.034 0.061 0.056 0.138

=50 0.500 0.053 0.150 0.134 0.051 0.053 0.042  0.055 0.052 0.100 0.056 0.055 0.046 0.055 0.155 0.112

250 0 1.000 0.064 0.044 0.122 0.055 0.033 0.088 0.051 0.052 0.420 0.054 0.033 0.070 0.060 0.044 0.114
-5 0.980 0.065 0.046 0.124 0.059 0.033 0.054  0.051 0.048 0.158 0.057 0.034 0.052 0.067 0.045 0.134

—-10 0.960 0.066 0.046 0.118 0.057 0.035 0.044  0.055 0.050 0.108 0.058 0.032 0.088 0.062 0.043 0.116

—20 0.920 0.054 0.046 0.112 0.056 0.033 0.036  0.049 0.047 0.078 0.058 0.034 0.030 0.056 0.047 0.122

=50 0.800 0.054 0.150 0.094 0.051 0.044 0.040  0.051 0.048 0.102 0.054 0.046 0.048 0.057 0.144 0.112

500 0 1.000 0.055 0.043 0.070 0.053 0.036 0.052  0.047 0.049 0.410 0.050 0.034 0.072 0.056 0.043 0.088
-5 0.990 0.064 0.044 0.104 0.056 0.033 0.052 0.052 0.048 0.202 0.056 0.033 0.052 0.062 0.049 0.108

—-10 0.980 0.061 0.044 0.082 0.053 0.032 0.026  0.047 0.044 0.152 0.053 0.030 0.036 0.061 0.044 0.074

—20 0.960 0.055 0.043 0.114 0.050 0.029 0.040 0.050 0.046 0.136 0.052 0.033 0.042 0.058 0.045 0.102

=50 0.900 0.051 0.097 0.112 0.049 0.034 0.060  0.056  0.053 0.136 0.050 0.033 0.058 0.057 0.098 0.120

1000 0 1.000 0.054 0.039 0.066 0.056 0.034 0.044  0.052 0.053 0.468 0.054 0.033 0.044 0.061 0.044 0.096
-5 0.995 0.065 0.049 0.088 0.057 0.035 0.060  0.053  0.053 0.216 0.054 0.030 0.060 0.063 0.046 0.112

-10 0.990 0.060 0.047 0.096 0.055 0.031 0.062  0.047 0.045 0.146 0.052 0.032 0.054 0.060 0.046 0.106

—20 0.980 0.061 0.045 0.100 0.053 0.030 0.040 0.051 0.047 0.124 0.051 0.028 0.042 0.064 0.050 0.104

-50 0.950 0.052 0.064 0.124 0.052 0.027 0.036  0.053 0.051 0.116 0.053 0.028 0.034 0.053 0.064 0.110
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Table 3

Finite—sample sizes for multivariate predictive systems

This table presents finite—sample sizes for four Wald tests, with nominal size 5%, based on the multivariate
predictive system in (26) with three regressors exhibiting different degrees of persistence (unit root, local-to-unity
and stationary), as described in the Monte Carlo simulation in Section 2.4. W, Feports the rejection rate for the

oint
joint Wald test, defined in (19), under the null hypothesis H, : A=0,,,, i.e., that all three coefficients in vector A
are equal to zero. W, reports the corresponding rejection rate for the individual significance of the unit root

regressor coefficient, i.e., under the null hypothesis H,: A =0. W, 1, reports the rejection rate for the individual
significance of the local-to-unity regressor coefficient, i.e., under the null hypothesis H,: A, =0, while
W, reports the rejection rate for the individual significance of the stationary regressor coefficient, i.e., under

Stationary
the null hypothesis H, : A, = 0. Results are reported for (i) two sets of correlations (5's) between the residuals of
regressions (26) and (27), as estimated using S&P 500 value-weighted log excess return (regressand), earnings-
price ratio (UR), T-bill rate (LTU) and inflation rate (Stationary) with monthly (Correlation Set 1) and quarterly
(Correlation Set 2) data for the period 1927-2012, (ii) four sets of autocorrelation coefficients in the residuals of
autoregressions in (27): ¢ =0, 0.25, 0.5 and the corresponding sample estimates for each of the three regressors
mentioned above and (iii) different sample sizes: n=250, 500 and 1,000. The average rejection rates are calculated
over 10,000 repetitions.

Correlation Set 1 n Wit Wik W 1, Wsationary
250 0.052 0.078 0.065 0.057
b=, =4 =0 500 0.051 0.076 0.060 0.057
1000 0.047 0.077 0.065 0.054
250 0.070 0.076 0.065 0.055
$=¢ —¢ =025 500 0.064 0.080 0.062 0.053
1000 0.063 0.075 0.067 0.049
250 0.058 0.082 0.067 0.053
#=¢, —¢ =05 500 0.053 0.079 0.069 0.053
1000 0.049 0.080 0.059 0.052
¢ =028 250 0.070 0.084 0.065 0.055
¢, =0.32 500 0.064 0.080 0.069 0.052
¢, =-014 1000 0.067 0.079 0.062 0.053
Correlation Set 2 n Wigint A W, W,
250 0.058 0.054 0.058 0.056
$=¢, =4 =0 500 0.048 0.053 0.059 0.050
1000 0.051 0.054 0.054 0.054
250 0.057 0.054 0.053 0.058
¢ =4 =¢ =025 500 0.052 0.055 0.050 0.055
1000 0.056 0.050 0.053 0.051
250 0.054 0.058 0.057 0.054
#=¢,=¢ =05 500 0.049 0.058 0.059 0.047
1000 0.052 0.053 0.054 0.052
¢ =022 250 0.058 0.053 0.060 0.052
¢, =—0.1 500 0.053 0.053 0.052 0.051
¢, =-0.08 1000 0.052 0.052 0.049 0.053
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Table 4

Unit root tests for predictive regressors—Monthly data

This table presents the results of unit root tests for the following list of financial and economic variables defined in
Section 3: Dividend payout ratio (d/e), long-term yield (lty), dividend yield (d/y), dividend price ratio (d/p), T-bill
rate (tbl), earnings price ratio (e/p), book-to-market value ratio (b/m), default yield spread (dfy), net equity
expansion (ntis), term spread (tms) and inflation rate (inf). FEH corresponds to the least squares point estimate of the
AR(1): x, = R X, +U,. ADF stands for the augmented Dickey-Fuller test statistic, DF-GLS refers to the Elliot et

al. (1996) Dickey-Fuller-GLS test statistic, PP stands for the Phillips-Perron test statistic and KPSS refers to the
Kwiatkowski et al. (1992) test statistic. The Bayesian Information Criterion has been been used to select the
optimal lag length for ADF and DF-GLS test statistics. The sample period is January 1927—December 2012, *, **
and *** imply rejection of the null hypothesis of a unit root (for ADF, DF-GLS and PP) or stationarity (for KPSS)
at 10%, 5% and 1% level respectively.

R, ADF DF-GLS PP KPSS
Dividend payout ratio 0.999 —5.758*** —5.712%** —4.184*** 1.701%**
Long-term yield 0.999 —1.286 -1.181 -1.314 1.853***
Dividend yield 1.000 —2.179 —1.448 —2.087 2.502***
Dividend-price ratio 1.000 —2.180 —1.468 —2.149 2.505***
T-bill rate 0.997 —2.238 —2.237** —2.131 1.313***
Earnings-price ratio 1.000 —3.870*** —3.014%** —3.656*** 1.026***
Book-to-market value ratio 0.997 —3.108** —2.754%** —2.989** 1.384%**
Default yield spread 0.993 —3.430** —3.364*** —3.779*** 0.546**
Net equity expansion 0.981 —4.371%** —1.247 —4.592%** 1.008***
Term spread 0.985 —5.112%** =3.727%** —4.697*** 0.535**
Inflation rate 0.633 —9.161*** —5.257*** —20.531%** 0.617**
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Table 5

Unit root tests for predictive regressors—Quarterly data

This table presents the results of unit root tests for the following list of financial and economic variables defined
in Section 3: Dividend payout ratio (d/e), long-term yield (Ity), dividend yield (d/y), dividend price ratio (d/p),
T-bill rate (tbl), earnings price ratio (e/p), book-to-market value ratio (b/m), default yield spread (dfy), net

equity expansion (ntis), term spread (tms), inflation rate (inf) and consumption-wealth ratio (cay). F}n

corresponds to the least squares point estimate of the AR(1): x, = R X,_, +U, . ADF stands for the augmented

Dickey-Fuller test statistic, DF-GLS refers to the Elliot et al. (1996) Dickey-Fuller-GLS test statistic, PP stands
for the Phillips-Perron test statistic and KPSS refers to the Kwiatkowski et al. (1992) test statistic. The Bayesian
Information Criterion has been used to select the optimal lag length for ADF and DF-GLS test statistics. The
sample period is 1927Q1-2012Q4, with the exception of cay, which becomes available at quarterly frequency
after 1952, *, ** and *** imply rejection of the null hypothesis of a unit root (for ADF, DF-GLS and PP) or

stationarity (for KPSS) at 10%, 5% and 1% level respectively.

A

R, ADF DF-GLS PP KPSS
Dividend payout ratio 0.985 —4.019*** —3.995%*** —3.938*** 1.288***
Long-term yield 0.997 —1.428 —1.318 -1.213 1.023***
Dividend yield 1.000 —-2.159 -1.560 —-2.096 1.439***
Dividend-price ratio 1.000 —2.224 -1.619* —2.284 1.453***
T-bill rate 0.983 —2.141 —2.145** —2.333 0.765***
Earnings-price ratio 0.999 —4.274%** —2.462** —3.424** 0.665**
Book-to-market value ratio 0.989 —3.500%** —3.114%*** —3.262** 0.800***
Default yield spread 0.971 —3.241** —3.186*** —4.055*** 0.357*
Net equity expansion 0.939 —4.182*** —1.057 —4.654*** 0.752%**
Term spread 0.944 —4.536*** —2.923*** —5.333*** 0.418*
Inflation rate 0.627 —4.364*** —4.366*** —12.360*** 0.425*
Consumption-wealth ratio 0.951 —2.408 —2.201** —2.431 0.232
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Table 6

Univariate predictive regressions—Monthly data

This table presents the results of univariate predictive regression models, as in equation (1), during the sample periods
January 1927—-December 2012 (Panel A) and January 1952—December 2012 (Panel B). The dependent variable is the
monthly S&P 500 value-weighted log excess return and the lagged persistent regressor is each of the following
variables defined in Section 3: Dividend payout ratio (d/e), long-term yield (lIty), dividend yield (d/y), dividend price
ratio (d/p), T-bill rate (tbl), earnings price ratio (e/p), book-to-market value ratio (b/m), default yield spread (dfy), net
equity expansion (ntis), term spread (tms) and inflation rate (inf). A stands for the least squares slope coefficient

estimated via regression model (1), while t_ . is the corresponding t-statistic under the null hypothesis that Ais
equal to zero (i.e., no predictability). A, , defined in (17), stands for the slope coefficient for the predictive regression

(16) estimated via the proposed instrumental variable (IVX) approach, while IVX-Wald refers to the Wald statistic,
defined in equation (19), under the null hypothesis that the slope coefficient A is equal to zero. s denotes the
correlation coefficient between the residuals of regression models (1) and (2). *, ** and *** imply rejection of the null
hypothesis at 10%, 5% and 1% level respectively. CY 90% CI stands for the 90% Bonferroni confidence interval for
the bias-corrected scaled least squares slope coefficient of the predictive regression using the Q-test of Campbell and
Yogo (2006). Bold fonts indicate rejection of the null hypothesis of no predictability at the 10% level. JM reports the

p-value for the 71'5_05 statistic of Jansson and Moreira (2006) under the null hypothesis of no predictability.

Regressors Aos tos Aux  IVX-Wald 5 CY 90% ClI IM
Panel A: January 1927—December 2012

Dividend payout ratio -0.0024 -0.46  —0.0033 0.393 -0.067  —0.006 0.003 0.19
Long-term yield —0.0622 -1.01 —0.0665 1.064 —0.108 —0.007 0.002 0.38
Dividend yield 0.0075 1.97** 0.0081 3.129%* —-0.079 0.001 0.014 0.06*
Dividend-price ratio 0.0062 1.63 0.0065 2.031 -0.975 —0.004 0.008 0.32
T-bill rate -0.0784 -1.40 -0.0761 1.770 -0.062  —0.011 0.001 0.03**
Earnings-price ratio 0.0087  2.13**  0.0088 4.402%* -0.759  —-0.003 0.015 0.34
Book-to-market value ratio  0.0148  2.28**  0.0134  4.101**  —(0.823 0.001 0.021 0.12
Default yield spread 0.1100 0.45 0.0591 0.058 -0.274 —0.009 0.015 0.03**
Net equity expansion -0.1355 —1.93* -0.1720 4.150** -0.031  -0.026  —0.003  0.01***
Term spread 0.1482 1.13 0.1399 1.095 —0.005 —0.004 0.024 0.15
Inflation rate -0.3500 -1.07  -0.3555 1.148 0.023 —0.064 0.021 0.35
Panel B: January 1952—December 2012

Dividend payout ratio 0.0049 0.93 0.0044 0.672 -0.091  -0.003 0.009 0.31
Long-term yield -0.0725 -1.23 -0.0777 1.396 —0.148 —0.012 0.002 0.16
Dividend yield 0.0075 1.95* 0.0081 1.425 —0.058 0.001 0.014 0.04%*
Dividend-price ratio 0.0069 1.79* 0.0072 1.142 —0.986 —0.006 0.005 0.43
T-bill rate -0.1057 -2.01** -0.1054  3.537* -0.126  —-0.018  —0.002 0.27
Earnings-price ratio 0.0038 1.04 0.0029 0.588 -0.610 —0.011 0.006 0.46
Book-to-market value ratio ~ 0.0043 0.68 0.0029 0.174 -0.747  —0.007 0.008 0.27
Default yield spread 0.2275 0.65 0.2306 0.389 -0.056  —0.009 0.019 0.46
Net equity expansion -0.0259 -0.30 —0.0417 0.220 -0.063  —-0.016 0.010 0.28
Term spread 0.2071 1.88* 0.2176 3.808%* 0.034 0.002 0.038 0.03%%*
Inflation rate -1.0501 -2.31** -1.1057 5.922**  —-0.069 —0.130 —0.031 0.15
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Table 7

Univariate predictive regressions—Quarterly data

This table presents the results of univariate predictive regression models, as in equation (1), during the sample period
1927Q1-2012Q4 (Panel A) and 1952Q1-2012Q4 (Panel B). The dependent variable is the quarterly S&P 500 value-
weighted log excess return and the lagged persistent regressor is each of the following variables defined in Section 3:
Dividend payout ratio (d/e), long-term yield (lty), dividend yield (d/y), dividend price ratio (d/p), T-bill rate (tbl),
earnings price ratio (e/p), book-to-market value ratio (b/m), default yield spread (dfy), net equity expansion (ntis), term
spread (tms), inflation rate (inf) and consumption-wealth ratio (cay). A, stands for the least squares slope coefficient

estimated via regression model (1), while t_ . is the corresponding t-statistic under the null hypothesis that A is equal
to zero (i.e., no predictability). A, , defined in (17), stands for the slope coefficient for the predictive regression (16)
estimated via the proposed instrumental variable (IVVX) approach, while 1V X-Wald refers to the Wald statistic, defined in
equation (19), under the null hypothesis that the slope coefficient a is equal to zero. § denotes the correlation coefficient
between the residuals of regression models (1) and (2). *, ** and *** imply rejection of the null hypothesis at 10%, 5%

and 1% level respectively. CY 90% CI stands for the 90% Bonferroni confidence interval for the bias-corrected scaled
least squares slope coefficient of the predictive regression using the Q-test of Campbell and Yogo (2006). Bold fonts

indicate rejection of the null hypothesis of no predictability at the 10% level. JM reports the p-value for the 71'3_05 statistic

of Jansson and Moreira (2006) under the null hypothesis of no predictability.

Regressors Aos toss Aux  IVX-Wald ) CY 90% ClI IM
Panel A: 1927Q1-2012Q4

Dividend payout ratio —0.0031 -0.18 —0.0053 0.095 —0.138 —0.037 0.020 0.22
Long-term yield -0.1621 -0.78 -0.1705 0.629 -0.071 —0.022 0.008 0.34
Dividend yield 0.0216 1.69* 0.0232 2.638 0.045 0.001 0.044 0.03%*
Dividend-price ratio 0.0230 1.83* 0.0249 2.952% -0.943  —0.010 0.033 0.35
T-bill rate —-0.2110 -1.13 —0.2032 1.129 —0.029 —0.039 0.008 0.07*
Earnings-price ratio 0.0284 2.10** 0.0289 4.439%* —0.556 —0.002 0.072 0.31
Book-to-market value ratio 0.0610 2.82***  0.0565 6.553** —0.832 —0.001 0.062 0.10*
Default yield spread 0.6472 0.80 0.5041 0.390 -0.515 —-0.026 0.064  0.01°%**
Net equity expansion —0.6054 —2.60*** —0.7683 6.596** 0.137 —0.090 —0.022  0.04**
Term spread 0.4245 0.97 0.4007 0.796 —0.005 —0.016 0.076 0.17
Inflation rate —0.1980 -0.45 —0.1954 0.198 0.033 —0.084 0.061 0.43
Panel B: 1952Q1-2012Q4

Dividend payout ratio 0.0189 1.13 0.0177 1.097 -0.190  —0.024 0.057 0.50
Long-term yield -0.1792 -0.93 —0.1881 0.782 —0.095 —0.035 0.009 0.14
Dividend yield 0.0272 2.17** 0.0307 2.235 —0.095 0.004 0.046  0.03**
Dividend-price ratio 0.0237 1.88* 0.0257 1.525 —0.967 —0.016 0.019 0.44
T-bill rate -0.2835 —-1.65* —0.2806 2.362 -0.073  —0.067 0.001 0.24
Earnings-price ratio 0.0112 0.95 0.0088 0.518 -0.334  —0.028 0.044 0.49
Book-to-market value ratio 0.0200 0.97 0.0171 0.546 —-0.793 —-0.020 0.028 0.31
Default yield spread 0.6762 0.60 0.6910 0.329 -0.174  —0.041 0.065 0.49
Net equity expansion —0.0319 -0.11 —0.0718 0.060 —0.034  —0.043 0.344 0.43
Term spread 0.6047 1.68* 0.6349 3.057* 0.040 0.001 0.119  0.05**
Inflation rate —0.7879 —-1.38 —0.8793 2.356 —0.128 —0.193 —0.026 0.15
Consumption-wealth ratio 0.8480  3.38***  0.8746  11.351***  —0.429 0.032 0.110  0.02%%*
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Table 8

Predictive regressions with multiple regressors—Monthly data

This table presents the results of predictive regression models with multiple regressors, as in equation (1), during the sample periods January 1927—December 2012 (Panel
A) and January 1952—December 2012 (Panel B). In each case, the dependent variable is the monthly S&P 500 value-weighted log excess return and the lagged regressors are
combinations of the following variables defined in Section 3: Dividend price ratio (d/p), earnings price ratio (e/p), book-to-market value ratio (b/m), dividend payout ratio
(d/e), T-bill rate (tbl), default yield spread (dfy) and term spread (tms). A, , defined in (17), is the vector containing the slope coefficients with respect to each of the

employed variables for the predictive regression (16), estimated via the instrumental variable (IVX) approach. The significance of each individual coefficient is evaluated
using the Wald statistic, defined in equation (19), under the null hypothesis that the corresponding coefficient is equal to zero. Joint Wald refers to the same Wald statistic,
under the null hypothesis that all coefficients A are jointly equal to zero. *, ** and *** imply rejection of the null hypothesis at 10%, 5% and 1% level respectively.

Panel A: January 1927—December 2012

d/p elp b/m d/e tbl dfy tms Joint Wald  Related study/ Model
0.0061 —0.0807 3.644 Ang and Bekaert (2007)
0.0077 —-0.0647 -0.1871 0.0996 4.742 Ferson and Schadt (1996)
—-0.0010 0.0150 4,117 Kothari and Shanken (1997)
0.0091* —-0.0082 3.655 Lamont (1998)
0.0082 0.0053 0.1992 7.321* Campbell and Vuolteenaho (2004)
0.0112** —0.1275** 8.748** General-to-specific approach
Panel B: January 1952—December 2012
d/p elp b/m d/e tbl dfy tms Joint Wald  Related study/ Model
0.0150 —0.2314** 4.132 Ang and Bekaert (2007)
0.0130 —-0.2044 0.2252 0.0607 7.653 Ferson and Schadt (1996)
0.0237 —0.0290 2.085 Kothari and Shanken (1997)
0.0067 0.0025 1.326 Lamont (1998)
0.0060 —-0.0014 0.2633** 5.420 Campbell and Vuolteenaho (2004)
0.0108** —0.2113*** 8.160** General-to-specific approach
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Table 9

Predictive regressions with multiple regressors—Quarterly data

This table presents the results of predictive regression models with multiple regressors, as in equation (1), during the sample periods 1927Q1-2012Q4 (Panel A) and
1952Q1-2012Q4 (Panel B). In each case, the dependent variable is the quarterly S&P 500 value-weighted log excess return and the lagged persistent regressors are
combinations of the following variables defined in Section 3: Dividend price ratio (d/p), earnings price ratio (e/p), book-to-market value ratio (b/m), dividend payout ratio
(d/e), T-bill rate (tbl), default yield spread (dfy), term spread (tms), consumption-wealth ratio (cay) and net equity expansion (ntis). A , defined in (17), is the vector

containing the slope coefficients with respect to each of the employed variables for the predictive regression (16), estimated via the instrumental variable (1'VX) approach.
Joint Wald refers to the Wald statistic, defined in equation (19), under the null hypothesis that all coefficients A are jointly equal to zero. *, ** and *** imply rejection of the

null hypothesis at 10%, 5% and 1% level respectively.

Panel A: 1927Q1-20120Q4

d/p elp b/m dle tbl dfy tms ntis Joint Wald  Related study/ Model

0.0240* —-0.2190 3.971 Ang and Bekaert (2007)

0.0267 -0.1731 -0.2871 0.2476 4.557 Ferson and Schadt (1996)
—-0.0137 0.0770 6.576** Kothari and Shanken (1997)
0.0321** . —-0.0222 4.023 Lamont (1998)

0.0160 0.0413 0.5046 8.391** Campbell and Vuolteenaho (2004)
0.0361** —0.3755* —-0.6152* 13.469***  General-to-specific approach
Panel B: 1952Q1-2012Q4
d/p elp b/m d/e tbl dfy tms cay Joint Wald  Related study/ Model

0.0483 —0.6828* 3.745 Ang and Bekaert (2007)

0.0434 —-0.5884 0.5073 0.2380 6.880 Ferson and Schadt (1996)

0.0706 —0.0783 1.883 Kothari and Shanken (1997)

0.0235 0.0114 1.954 Lamont (1998)

0.0089 0.0161 0.7553** 4.574 Campbell and Vuolteenaho (2004)

0.0230 —0.0006 0.7333** 13.199***  Lettau and Ludvigson (2001)

0.0390** —0.7339***  2.4016** 0.9749%** 23.985***  General-to-specific approach
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Table 10

Finite—sample sizes for long—horizon Wald test

This table presents finite—sample sizes, derived from K—horizon univariate predictive regressions, as in equation (30), under the null hypothesis H, : A= 0 in the DGP (22).
W05 corresponds to the rejection rate for the long-horizon Wald statistic, defined in (34), with 5% nominal size. Results are reported for different degrees of correlation between
the residuals of regressions (22) and (23), 0 =—0.95, —0.5 and 0, different sample sizes n= 100, 500 and 1,000, different horizons K that are empirically relevant to the
corresponding sample size n and different local-to-unity parameters C= 0, —5, —10, —20 and —50. The reported results are based on the Monte Carlo simulation described in
Section 5.2 and the average rejection rates are calculated over 10,000 repetitions.

n=100 n=500 n=1000

0=—0.95 0=—0.5 0=0 0=—0.95 0=—0.5 0=0 0=—0.95 0=—0.5 0=0

C K Wo.05 Wo.05 Wo.05 C K Wo.0s Wo.0s Wo.0s C K Wo.05 Wo.0s Wo.0s
0 2 0.067 0.060 0.051 0 4 0.060 0.054 0.050 0 4 0.056 0.055 0.051
3 0.062 0.062 0.050 8 0.055 0.050 0.051 12 0.053 0.051 0.049

4 0.059 0.057 0.048 12 0.053 0.050 0.045 36 0.048 0.044 0.048

5 0.057 0.055 0.047 20 0.050 0.049 0.047 60 0.044 0.042 0.049

-5 2 0.067 0.060 0.053 -5 4 0.060 0.059 0.050 -5 4 0.059 0.056 0.050
3 0.064 0.060 0.052 8 0.063 0.053 0.053 12 0.060 0.052 0.047

4 0.062 0.050 0.048 12 0.060 0.052 0.053 36 0.052 0.053 0.045

5 0.059 0.050 0.048 20 0.057 0.049 0.044 60 0.047 0.043 0.047

-10 2 0.061 0.062 0.050 -10 4 0.059 0.052 0.050 -10 4 0.061 0.049 0.047
3 0.066 0.057 0.049 8 0.056 0.056 0.050 12 0.054 0.055 0.052

4 0.059 0.051 0.054 12 0.058 0.054 0.049 36 0.053 0.052 0.048

5 0.058 0.052 0.047 20 0.053 0.048 0.049 60 0.049 0.044 0.047

-20 2 0.058 0.057 0.055 -20 4 0.057 0.056 0.050 -20 4 0.054 0.051 0.047
3 0.057 0.052 0.049 8 0.056 0.051 0.050 12 0.057 0.051 0.048

4 0.063 0.054 0.049 12 0.054 0.052 0.046 36 0.050 0.050 0.048

5 0.055 0.052 0.052 20 0.054 0.047 0.046 60 0.052 0.049 0.043

=50 2 0.050 0.053 0.059 -50 4 0.052 0.050 0.050 -50 4 0.052 0.052 0.051
3 0.051 0.055 0.051 8 0.050 0.051 0.050 12 0.048 0.052 0.051

4 0.050 0.053 0.051 12 0.049 0.048 0.052 36 0.052 0.053 0.047

5 0.051 0.051 0.053 20 0.051 0.050 0.049 60 0.053 0.050 0.046
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Table 11

Long—horizon univariate predictive regressions—Monthly data

This table presents the results of long-horizon univariate predictive regression models, as in equation (30), during the sample periods January 1927—December 2012 (Panel
A) and January 1952—December 2012 (Panel B), for various horizons (K-mths). The dependent variable is the cumulative S&P 500 value-weighted log excess return from
month t to month t+K-1, corresponding to a horizon of K months, and the lagged persistent regressor is each of the following variables defined in Section 3: Dividend payout
ratio (d/e), long-term yield (lty), dividend yield (d/y), dividend price ratio (d/p), T-bill rate (tbl), earnings price ratio (e/p), book-to-market value ratio (b/m), default yield
spread (dfy), net equity expansion (ntis), term spread (tms) and inflation rate (inf). The table reports the long-horizon Wald statistic, defined in equation (34), under the null
hypothesis that the slope coefficient of the long-horizon univariate predictive regression estimated via the proposed instrumental variable (IVX) approach, is equal to zero
(i.e., no predictability). *, ** and *** imply rejection of the null hypothesis at 10%, 5% and 1% level respectively.

Panel A: January 1927—-December 2012

K-mths dle Ity dly d/p tbl elp b/m dfy ntis tms inf
4 0.138 0.752 2.322 2.271 1.413 3.978** 4.851** 0.054 4.805** 1.125 0.781
12 0.005 0.195 3.492* 3.230* 0.947 4.538** 5.767** 0.124 9.123*** 2.156 0.528
24 0.472 0.061 3.772* 3.782* 0.774 3.336* 4.501** 0.141 8.784*** 3.080* 0.022
36 0.803 0.039 3.415* 3.452* 0.918 2.806* 3.866** 0.105 6.816*** 5.025** 0.001
48 0.422 0.021 3.150* 3.234* 0.668 3.418* 3.788* 0.222 4.960** 4.642%* 0.053
60 0.637 0.024 2.912* 3.018* 0.525 3.044* 2.970* 0.232 4.309** 4,022** 0.057

Panel B: January 1952—December 2012

K-mths d/e Ity dly d/p tbl elp b/m dfy ntis tms inf
4 1.522 0.821 1.517 1.386 2.483 0.372 0.367 0.866 0.006 3.367* 5.507**
12 1.717 0.133 1.810 1.763 1.406 0.761 0.642 0.549 0.005 4.422%* 8.328***
24 4.392%* 0.009 1.584 1.639 0.651 0.286 0.241 0.048 0.147 3.494* 3.670*
36 5.779** 0.000 1.269 1.306 0.449 0.203 0.063 0.014 0.119 3.654* 2.400
48 3.317* 0.045 0.901 0.932 0.157 0.467 0.050 0.010 0.040 3.388* 2.297
60 3.856%* 0.127 0.883 0.896 0.039 0.541 0.112 0.093 0.001 3.412* 1.311
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Table 12

Long—horizon univariate predictive regressions—Quarterly data

This table presents the results of long-horizon univariate predictive regression models, as in equation (30), during the sample periods 1927Q1-2012Q4 (Panel A) and
1952Q1-2012Q4 (Panel B), for various horizons (K-qgtrs). The dependent variable is the cumulative S&P 500 value-weighted log excess return from quarter t to quarter
t+K-1, corresponding to a horizon of K quarters, and the lagged persistent regressor is each of the following variables defined in Section 3: Dividend payout ratio (d/e),
long-term yield (Ity), dividend yield (d/y), dividend price ratio (d/p), T-bill rate (tbl), earnings price ratio (e/p), book-to-market value ratio (b/m), default yield spread (dfy),
net equity expansion (ntis), term spread (tms), inflation rate (inf) and consumption-wealth ratio (cay). The table reports the long-horizon Wald statistic, defined in equation
(34), under the null hypothesis that the slope coefficient of the long-horizon univariate predictive regression estimated via the proposed instrumental variable (IVX)

approach, is equal to zero (i.e., no predictability). *, ** and *** imply rejection of the null hypothesis at 10%, 5% and 1% level respectively.

Panel A: 1927Q1-2012Q4

K-gtrs d/e Ity dly d/p tbl elp b/m dfy ntis Tms inf
4 0.000 0.173 3.537* 3.362* 0.746 4.221** 5.750** 0.139 7.672%** 1.564 0.116
8 0.424 0.047 3.567* 3.648* 0.614 3.010* 4.207** 0.170 6.135** 2.475 0.021
12 0.703 0.029 3.190* 3.233* 0.697 2.461 3.428* 0.112 4.466** 3.827* 0.036
16 0.378 0.017 2.771* 2.954* 0.510 2.906* 3.181* 0.201 3.063* 3.496* 0.083
20 0.527 0.017 2.562 2.744* 0.408 2.623 2.506 0.203 2419 3.158* 0.061

Panel B: 1952Q1-2012Q4

K-gtrs d/e Ity dly d/p tbl elp b/m dfy ntis Tms inf Cay
4 1.409 0.132 1.902 1.902 1.201 0.857 0.824 0.391 0.022 3.569* 5.511** 11.022***
8 3.516* 0.005 1.524 1.686 0.530 0.361 0.352 0.030 0.088 2.977* 2.585 8.794***
12 4.865** 0.000 1.269 1.348 0.353 0.244 0.113 0.003 0.079 2.993* 1.784 7.326***
16 2.960* 0.034 0.895 0.961 0.135 0.463 0.062 0.007 0.038 2.809* 1.693 6.048**
20 3.247* 0.112 0.878 0.911 0.034 0.558 0.126 0.069 0.002 2.974* 0.927 5.000**
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Table 13

Long—horizon predictive regressions with multiple regressors
This table presents the results of long-horizon predictive regression models with multiple regressors, as in equation (30). Panel A contains the results for monthly data
and Panel B contains the results for quarterly data. Each panel reports results for the full sample period, 1927-2012, and the subperiod 1952—2012. Results are reported
for various horizons (K-mths in Panel A and K-gtrs in Panel B). In Panel A, the dependent variable is the cumulative S&P 500 value-weighted log excess return from
month t to month t+K-1, corresponding to a horizon of K months. In Panel B, the dependent variable is the cumulative S&P 500 value-weighted log excess return from
quarter t to quarter t+K-1, corresponding to a horizon of K quarters. The lagged persistent regressors are combinations of the following variables: Earnings price ratio
(e/p), T-hill rate (tbl), default yield spread (dfy), net equity expansion (ntis) and consumption-wealth ratio (cay). The combination of regressors used in each presented
case is the one derived from the general-to-specific approach for 1-period regressions, as described in Section 4.2 and presented in Tables 8 and 9. The table reports the
long-horizon Wald statistic, defined in equation (34), testing the individual significance of each regressor, i.e., under the null hypothesis that the corresponding slope
coefficient of the long-horizon regression estimated via the proposed instrumental variable (IVX) approach, is equal to zero. It also reports the corresponding Joint Wald
statistic testing the joint significance of the employed regressors, i.e., under the null hypothesis that all slope coefficients of the long-horizon regression are jointly equal
to zero. *, ** and *** imply rejection of the null hypothesis at 10%, 5% and 1% level respectively.

Panel A: Monthly data

Period: January 1927—December 2012

Period: January 1952—December 2012

K-mths elp tbl Joint Wald elp tbl Joint Wald
4 5.778** 3.894** 7.638** 3.257* 5.666** 5.734*
12 6.383** 3.166* 7.614** 4.093** 4.986** 5.289*
24 4.990** 2.124 5.794* 2.273 2411 2.596
36 4.599** 1.915 5.383* 2.049 1.885 2.116
48 4.983** 1.441 5.660* 2.207 1.702 2.216
60 4.321%* 1.039 4.822* 1.814 1.258 1.825

Panel B: Quarterly data

Period: 1927Q1-2012Q4 Period: 1952Q1-2012Q4

K-qtrs elp tbl ntis Joint Wald elp tbl dfy cay Joint Wald
4 4.862** 2.922* 4.928** 13.530*** 3.741* 6.114** 4.890** 16.786*** 23.548***
8 3.500* 2.157 3.988** 10.393** 2.013 3.662* 1.009 11.809*** 16.118***
12 3.791* 2.067 2.421 8.296** 1.477 2.683 0.062 6.733*** 13.292***
16 4.150** 1.689 1.175 7.300* 1.380 1.854 0.036 3.852** 11.569**
20 3.854** 1.383 0.600 6.102 0.859 0.948 0.045 1.604 10.664**
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Figure 1

Power plots for sample size n=250 and residuals’ correlation coefficient o =—-0.95

This figure shows the rejection rates for tests of the null hypothesis H, : A=0 versus the alternative H, : A= 0 in
(22) as the true value of A increases. The solid curve (Waldggs) illustrates the rejection rate we get using the Wald test,
defined in equation (19), with 5% nominal size (horizontal line). The dashed curve (CYQo gs) illustrates the rejection rate
using the 95% confidence interval of the Campbell and Yogo (2006) Q-test. The dash-dot curve (JMgs) illustrates the
rejection rate using the 7 . statistic of Jansson and Moreira (2006). Each panel corresponds to a different local-to-unity
parameter C= 0, =5, —10, —15, —20 and —50. These rejection rates have been calculated using Monte Carlo simulations
described in Section 2.1 with 10,000 repetitions for a sample size of n=250, correlation coefficient between the residuals
of regressions (22) and (23) ¢ =—0.95 and no autocorrelation in the residuals of the autoregressive equation, i.e., ¢ =0
in (24).
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Figure 2

Power plots for sample size =250 and residuals’ correlation coefficient 6 =—0.5

This figure shows the rejection rates for tests of the null hypothesis H, : A=0 versus the alternative H, : A= 0 in
(22) as the true value of A increases. The solid curve (Waldggs) illustrates the rejection rate we get using the Wald test,
defined in equation (19), with 5% nominal size (horizontal line). The dashed curve (CY Qo s) illustrates the rejection rate
using the 95% confidence interval of the Campbell and Yogo (2006) Q-test. The dash-dot curve (JMgs) illustrates the
rejection rate using the 7 . statistic of Jansson and Moreira (2006). Each panel corresponds to a different local-to-unity
parameter C= 0, =5, —10, —15, —20 and —50. These rejection rates have been calculated using Monte Carlo simulations
described in Section 2.1 with 10,000 repetitions for a sample size of n=250, correlation coefficient between the residuals
of regressions (22) and (23) 0 =—0.5 and no autocorrelation in the residuals of the autoregressive equation, i.e., ¢ =0in
(24).
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Figure 3

Power plots for sample size n=250 and residuals’ correlation coefficient 6 =0

This figure shows the rejection rates for tests of the null hypothesis H, : A=0 versus the alternative H, : A= 0 in
(22) as the true value of A increases. The solid curve (Waldggs) illustrates the rejection rate we get using the Wald test,
defined in equation (19), with 5% nominal size (horizontal line). The dashed curve (CYQo gs) illustrates the rejection rate
using the 95% confidence interval of the Campbell and Yogo (2006) Q-test. The dash-dot curve (JMgs) illustrates the
rejection rate using the 7 . statistic of Jansson and Moreira (2006). Each panel corresponds to a different local-to-unity
parameter C= 0, =5, —10, —15, —20 and —50. These rejection rates have been calculated using Monte Carlo simulations
described in Section 2.1 with 10,000 repetitions for a sample size of n=250, correlation coefficient between the residuals
of regressions (22) and (23) d =0 and no autocorrelation in the residuals of the autoregressive equation, i.e., ¢ =0 in
(24).
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Figure 4

Power plots for joint Wald test with multiple regressors (Correlation set 1)

This figure shows the rejection rates for the joint Wald test defined in (19), with 5% nominal size, under the null
hypothesis H, : A=0,,,. i.e., that all three coefficients in vector A are equal to zero, as the true value of each regressor

coefficient A; increases. The joint Wald test is based on the multivariate predictive system in (26), with three regressors
exhibiting different degrees of persistence (unit root, local-to-unity and stationary). The solid curve (Wald"?) illustrates
the rejection rate for the joint Wald test as the true value of the unit root regressor coefficient increases. The dashed curve
(Wald“™) illustrates the corresponding rejection rate as the true value of the local-to-unity regressor coefficient
increases. The dotted curve (Wald®®"™Y) jllustrates the corresponding rejection rate as the true value of the stationary
regressor coefficient increases. These rejection rates have been calculated using Monte Carlo simulations described in
Section 2.4 with 10,000 repetitions for different sample sizes: n=100, 250, 500 and 1,000. The correlation coefficients
(8's) between the residuals of regressions (26) and (27) are estimated using S&P 500 value-weighted log excess return
(regressand), earnings-price ratio (UR), T-bill rate (LTU) and inflation rate (Stationary) with monthly data for the period
1927-2012, i.e., Correlation Set 1. The utilized autocorrelation coefficients (¢'s) for the autoregressions are the
corresponding sample estimates for each of the three regressors mentioned above.
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Figure 5
Power plots for joint Wald test with multiple regressors (Correlation set 2)
This figure shows the rejection rates for the joint Wald test defined in (19), with 5% nominal size, under the null

hypothesis H, : A=0,,,, i.e., that all three coefficients in vector A are equal to zero, as the true value of each regressor

coefficient A; increases. The joint Wald test is based on the multivariate predictive system in (26), with three regressors
exhibiting different degrees of persistence (unit root, local-to-unity and stationary). The solid curve (Wald"?) illustrates
the rejection rate for the joint Wald test as the true value of the unit root regressor coefficient increases. The dashed curve
(Wald“™) illustrates the corresponding rejection rate as the true value of the local-to-unity regressor coefficient
increases. The dotted curve (Wald®®"™Y) jllustrates the corresponding rejection rate as the true value of the stationary
regressor coefficient increases. These rejection rates have been calculated using Monte Carlo simulations described in
Section 2.4 with 10,000 repetitions for different sample sizes: n=100, 250, 500 and 1,000. The correlation coefficients
(8's) between the residuals of regressions (26) and (27) are estimated using S&P 500 value-weighted log excess return
(regressand), earnings-price ratio (UR), T-bill rate (LTU) and inflation rate (Stationary) with quarterly data for the period
1927-2012, i.e., Correlation Set 2. The utilized autocorrelation coefficients (p's) for the autoregressions are the

corresponding sample estimates for each of the three regressors mentioned above.
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Robust Econometric Inference for Stock Return Predictability

Online Appendix

Alexandros Kostakis, Tassos Magdalinos and Michalis P. Stamatogiannis

1. Proofs of Theorem 1 and Theorem A

This section establishes the two main asymptotic results of the paper: the mixed Gaussianity
property of the IVX estimator (Theorem A) and the chi-squared limit distribution of the IVX—
Wald test statistic (Theorem 1) under Assumption INNOV. The proofs employ some useful
auxiliary results that are established independently. In particular, new limit theory for IVX
estimation and inference is established in the presence of conditional heteroskedasticity in the

innovation errors of the general form presented in Assumption INNOV (ii) of the paper.

1.1 Introduction

We consider the system of predictive regressions

Yo = pt Arig +e, (1)

rt = Rprio1+ uy, (2)
C

R, = I+ — for some a >0, (3)
n

with innovations e, u; satisfying Assumption INNOV and the IVX instrument process z; =

R,..%—1 + Az based on the matrix

C,

for given values of § and C,.

1.2 Auxiliary results

We begin by establishing two auxiliary results that facilitate the proof of Theorem A and The-

orem 1. The first result characterizes the asymptotic behavior of the sample mean of the IVX



instruments Z;. We employ the shorthand notation a A b = min (a,b) and a V b = max (a,b)
throughout. For a given matrix M, ||M| denotes the spectral norm (the square root of the
maximal eigenvalue of the matrix M'M) and ||M]|| 1, denotes the usual L, norm of vec(M).
For brevity, we refer to Phillips and Magdalinos (2009) as PM and to Magdalinos and Phillips
(2009) as MP.

Lemma B1. Let a and 3 be defined by (3) and (4) respectively. The following approximations

are valid as n — oo:

(i) When 0 < 8 < a:

n
a Are)—8
O P e N O (e B
t=1

) When0 <023 < 1 51350, (107F).
Proof. By Proposition A2 of PM,

sup E ¢ )17 = O (n[(IAQ)VBHQ(aAﬁ)) for all &« >0, g€ (0,1). (5)

1<t<n

Summing the recursion Z; = R,,Z;—1 + Az, over {1,...,n} yields

n n n
Tpn — T = E Zt — Ry E Zt—1 = Zn + (Ir - an) g Zt—1
t=1 t=1 t=1

or equivalently, since R,,, — I, = C,/ n? ,
n

> =07 (5 — a0+ x0). (6)

t=1

For part (i), using the decomposition Z; = z; + n%¢nt and (5) with 5 < a we obtain that

=t =0, (2) 0, () = 0, (w7)

na/2



since n#=/2 = nf/2p=(@=F)/2 = 5 (nP/2). Therefore, (6) implies that

L §~; -1 1 ~(a=p)/2
Z Zt—1 = —CZ n?l'n + Op (n )
as required. For part (ii), applying the decomposition
~ C
Rt = Tt — Rflz‘ro + nigwnt (7)

to (6) we obtain

= Cz n n%
Zn — Tp = mwnn - an.’L'g = OP (nlg/2> (8>

since (5) implies that v, = O, (naJ“B/ %) when 0 < a < 8. Now part (ii) follows by combining
(6) and (8).
The second auxiliary result characterizes IVX limit theory for stationary regressors. In

accordance to notation of the paper, we denote the undemeaned regression matrices by
Y = (ylb "-7y;1)/7 X = (IL'6, ...,.’L’;ﬂbil)l and &€ = (8/17 "-75;)/

and the demeaned regression matrices by

Y = (yi_g;u 7?/;7,_@;1),7
X = (.730 - xizfl? 71‘%71 - xlnfl),
£ = (51 é;w 1Ep E;L),

Lemma B2. Let x; be a stable-root regressor belonging to the persistence class P(iv) with
C <0 and aa=0 and let

vos =Y Ruyj, R=I+C (9)
=0

be a stationary version of x;. The following approximations are valid for any 5 € (0,1) under

Assumption INNOV as n — oo:
i) n ' X'Z =n"'X'X + o0, (1)

(i) n'2'Z =n"'X'X + 0, (1)



(il)) n ' X'X =n~! D1 $07t71$6,t—1 +0p (1)
(iv) n™128'Z =n~ 128X + 0, (1) =n" V230, etwp, 1 +0p(1).

Proof. By assumption 0 = a < 3 < 1, so Lemma B1(ii) implies that >} | Z = O, (nﬁ/Q) . For

part (i), applying the decomposition (7) and using the fact that z,,—1 = O, (nil/ 2) we obtain

n
nilng = nilg mt_lééfl—in_légfl

1

= —Z.’L’t 1{I:t1+ H_/BZLL} 1¢nt 1C +O < lB)

t=1
_ lyixio (L o, (-
= AT a ) T i

because the Cauchy—Schwarz inequality yields

1 n
< 5 2 E (ol [en )
t=1

Eller?)” =
WZ(%—IH?)“

=1
1/2 /2 4 1
(E ||931||2) <1S<1t1£)nE ||71)nt||2> B ) <nﬁ/2>

since (5) with a = 0 implies that sup;<,;<, F/ b, |I> = O (nf). For part (ii), (7) implies the

n
Y !
T Ti—
ni+B v t—1%nt—1

L1

IN

IN

identity
77 = —XX—i— 1+ﬂzmt 19-1C: + 1+5C Z%zt 141
t=1

1
1_,_250 ant 1wnt IC +O < 1— 5)

where all terms containing the initial condition xy are included in the remainder. From part (i),
we know that the second and third terms on the right have order O, (n‘ﬁ/ 2). For the last term

on the right hand side, (5) implies that

1 « 2 1
<n1+26;EHwnt—1H =0 n7 )

1 n
1+28 Z Unt—1¥ni—1
t=1

Ly



establishing part (ii). For part (iii), (7) again yields
n2E'7 = UzZQz —n?,2

1
= 1/22&% 1+ +5Z€twnt 1C. + O, < 1ﬁ>

n 2

and the result follows by (5) since the second term on the right is a martingale array satisfying

1\ E || & ) EH 1H )
Pl 2 uaoa)| = T Y Bl < St s Pl =0 55).

Note that the above approximations employ unconditional moment bounds and hence apply
under both part (i) and part (ii) of Assumption INNOV. To show the second asymptotic equiv-

alence of part (iv), the identity z; 1 = R'"lzo + 22;11 Ri—ly,_; yields

o0
Tot—1 — L1 = Z ijlut_j - Rtil"ro. (10)
j=t
Using (10), we obtain
n n
n~ V2| Eex — Zetxg,t,l = pl/2 Z& (Hfo,t—l - mt—l)’

IN

_WZZHRIIJ el ue—sll + 12 H%IIZHRIIt el

t=1 j=t

= 0, (2 Jaull)

as 0 | R leill, < lleillz, >0 |R||" and the first term is bounded in L; norm by

2

n o ) o )
02 lellp, lullg, D0 D IRIPT <072 lenlp, lullz, | DO IRI

t=1 j=t §=0



/ ’ ! /
To show part (iii), zo,t-17041 — Te-174_1 = To,t—1 (Tot—1 — Tt—1) + (To4—1 — T4—1) T;_; and

(10) yield
n n
XX = wmop v || < vt (el + el o1 — 2l
t=1 t=1
n
< 'Y ol lwo 1 — 2
t=1
n
+n ! 2ol D lwos—1 — zea | | R
t=1
n t—1 ]
+0 S S IR lwo,-1 — wema | g |
t=1 j=1
n o0
_ 1 — 1
n Y S IR o1 sl + [lzoll n 1ZHRW 0,1
t=1 j=t
07 o) Z IRIPCY 0=t || Z ||| Z IR fJug—s
= t=1 j=t
n t—1
1 — 1
+n YOS RIPT ZHRH | e |
t=1 j=1

— tfl_ j—1 — 2
4 ool 3 IRICE S IRIF fuesll = Oy (17 ool?)
t=1 j=1

using the Ly Cauchy Schwarz inequality and stationarity of zo¢—1. This shows part (iii).
The third auxiliary result shows that the limit theory for IVX sample moments is invariant

to the presence of conditional heteroskedasticity in the innovation sequence.

Lemma B3. Under Assumption INNOV (ii) the sample moments

n n

—1—« / —1— ! —(an 1—(an

n E Tg—1Tp_1, M s E Zt—1%1-1, N p) E Ti— 1Zt 1s and n~ (@AB) E Zt 1zt 1
t=1 t=1

t=1

have the same limit distributions as under Assumption INNOV (i) for a regressor x; belonging

to any of the persistence classes P(i)-P(iv).

Proof. First note that Lemma 3.1 (ii), (iii) and Lemma 3.5 (ii) of PM are established us-

ing unconditional moment bounds and continue to hold under conditional heteroskedasticity.



Therefore the approximations

R 3 1 < 1 < N
W Z xt_lzéil = W Z .’L't_lzléil — W Zwt_lxgilccz 1 + Op (1) s /8 <« (11)
t=1 t=1 t=1
1 &« 3 1 «
it th_1Z£_1 = Ta Z$t—1$2—1 +o0p(1), a<p (12)
t=1 t=1
I . 1 <
W Z Zt,122_1 = W Z thlzi_l + Op (1) s ﬁ < (].3)
t=1 t=1
1 K. R
Tra Z %1z, = Tt Z Tz +top (1), a<p (14)
t=1 t=1

are valid under Assumption INNOV(ii). We need to derive the limit distributions of sample
moments involving x; separately for each persistence class.

Case 1: z; belongs to class P(iii). In this case x; is near stationary with autoregressive
matrix R, = I, + C/n® a € (0,1).

For n=1=@ 3% | 12}, the identity z;—1 = RY tzg + (,pq with
t—1
Cut =) Rhur; (15)
j=0

and the fact that o = o, (na/ ?) imply that

1 o 1
Tra Z Ty1T)_y = Tra Z Cnt—1Cne—1 +0p (1) (16)
t=1 t=1
because n =1 S0 || RL Yol ]| < n Y @l Xory [|€n_1]] = Op (n7220) = 0, (1) since

1/2
SUpP¢>1 nt—1|| = SUP¢>1 nt—1 = n - OINCe Gy p1 = Up (N applymg the
1 B [[Cua]| € 0oy (BllCunr|®) ™ = 0 (n272). Since ¢, Op (n/?) applying th

argument of MP to the recursion (,,;, = R,(,;_; + us we obtain

1 -
Vec{nl-f-OcZCnt—ldbtl} = l+o,(V(CRI+IRC)
t=1
1 & =, 1<~ |,
Xvec Ezcm,lut—kEZutCm_l—I—EZutut . (17)
t=1 t=1 t=1

Under assumption INNOV(ii), strict stationarity and ergodicity of (e;),c, together with the



summability condition > 72 7 [|C;|| < oo imply that the sequences (ut),cy and (&) with

00 00
&= Cierj, Cj= > Cy (18)
=0 k=j+1
are also strictly stationary and ergodic (since 3 727 [|Cjl| < oo implies 3772, HC']H < 00, see
Phillips and Solo (1992)). Since ||n~" 320 Cppqup —n =" 300 &g, — 0 when a € (0,1)
using unconditional moment bounds (see MP), the ergodic theorem (e.g. Theorem 10.6 of
Kallenberg (2002)) implies that the vectorized expression on the right side of (17) converges a.s.
and in L to

Eéwy + Bugey + Buguy, = Ay + Ay, + Bugu) = Quy.

Since (C®@ I +1® C) 'vee(Quu) = vee(Ve), (17) implies that
I )
oita Z Cnt—1Cnt—1 — L1 VO (19)
t=1

and the above combined with (16) shows that n™ 1Y% | &1z, —, Ve
Since z; belongs to the class of near-stationary processes P(iii) with autoregressive matrix

R.,.=1.+C,/ n? for all persistence regimes, and the limit

n o)
nolm@ th,lm;_l —p Vo = / " Oy dr (20)
0
t=1

is valid for an arbitrary process in the class P(iii) with autoregressive matrix R,, = I, + C/n?,

the limit

n [
n~17F Z z-124_1 —p Vo, = / €O Qe dr (21)
t=1 0

follows immediately from (20).

For n=1=(@\8) S~ o, 12l | with B < a, equation (17) of PM yields

1 n 1 n n n 3
5 > w1z =L+ 0, (1)] - (Z veaup+ Y wzl g+ Y wu | (=C7Y). (22)
t=1 t=1 t=1 t=1

Note that the asymptotic equivalence in (22) is valid for x; belonging to any of the persis-

tence regimes P(i)-P(iii) (the stable root case P(iv) is ruled out because 0 = o < [ and



hence > ) | x¢—1%,_; does not feature in the asymptotics). When a € (0,1), MP show that,
independently of the conditional variance of the primitive innovations e;, n~! Yo Ti_1uy =
n~ESR &g 4 op (1), and n YR wzf ;= nt Y01 wé), + o, (1). The ergodic theorem
applied to n ™1 Y1 | &} and =t S°7 | wpu) implies that n 1A Y"" @y 42l | —, —Qu,,Co L
Combining this with (11) and (20) delivers the required result when 5 < a. When « < f3, the
result follows by (12) and (20).

For n~1=(@"8) S~ %, 12! | the result follows directly by (13) and (21) when 8 < a and by
(14) and (20) when a < §3.

Case 2: z; belongs to classes P(i)-P(ii). In this case a = 1 and the asymptotic behavior
of n723°0 a1, and n” BN w1z, | is driven by a functional central limit theorem

on Dgr [0,1] of the random element

[ns] [ns]

Zu] Ze]—i-op )= B(s) (23)

where B (s) is a Brownian motion with covariance matrix Q,, = C (1) Z..C (1), where the
first asymptotic equivalence follows by a standard application of the Phillips and Solo (1992)
BN decomposition approach. The validity of the weak convergence on Dgr [0,1] in (23) under
Assumption INNOV(ii) is guaranteed by the functional central limit theorem for stationary
ergodic martingale differences, e.g. Theorem 18.3 of Billingsley (1968). Since (23) and the
ergodic theorem for n=!'>°1 | &uj and n~!>°1 | wu) continue to apply and yield the same
limits under Assumption INNOV(i) and INNOV(ii), the sample moments of the lemma will
have the same limit distributions.

Case 3: x; belongs to class P(iv). In this case & = 0 and z; is a stable root autoregression
with fixed autoregressive matrix R = I, + C with ||R|| < 1. Given the results of Lemma B2
above, the only sample moment of interest in this case is n ! Sy $07t,1m6,t_1, with x; defined
in (9). Since 322, |R|]Y < oo and (ut)yeq is strictly stationary and ergodic, xo; is a strictly

stationary and ergodic process. The ergodic theorem then implies that

n
nt Zmo,tfﬂé),t—l — 1, B (z0,170,4) Z RT, (i — j) (24)
t=1 4,7=0

where Iy (k) = E (uu;_,) and n ' X'X —), E (z0,1() follows by Lemma B2(iii).



Lemma B4. Under Assumption INNOV (ii) the following limits apply as n — oo:
(i) under P(uii), n —(1+a)/2 Yoy (@—1 ®e) = N (0, Ve @ Xee)
(i) n=HA230 (21 ®@e) = N(0,Ve, @ Zee)

(ifi) under P(iv), =237 (wi-1 ® &) = N (0, E [wo12f ; ® £26h))

where x4 is defined in (9).

Proof. For part (i), ; is a near stationary process with a € (0,1). The proof is long and
technically demanding and is contained in Magdalinos (2014).

For part (ii), since z; belongs to the class near-stationary processes P(iii) with autoregressive
matrix R,, = I, + C./n?, the limit distribution of n~(1+8)/2 Yoiq (zt—1 ®e¢) can be deduced
directly by part (i) above: since for an arbitrary near stationary process z; with autoregressive
matrix R, = I, + C/n®, the limit distribution of n —(1+a)/2 Z " (x4—1 ® &) is Gaussian with
mean zero and covariance matrix equal to the probability limit of =17 Yot To1T) g @ B,
the limit distribution of n~(1+#)/2 Yo (z—1 ® €¢) is Gaussian with mean zero and covariance
matrix equal to the probability limit of n~1=8 Yoy Zt—1%21_1 @ e, the latter being equal to
Vo, ® e by (21).

For part (iii), recalling the definition of z¢; in (9), Lemma B2(iv) implies that it is enough to
derive the limit distribution of n~1/2 Yoty (o4—1 ®@er). Since {zos—1 @ et > 1} is a strictly

stationary and ergodic martingale difference, Theorem 18.3 of Billingsley (1968) implies that

n
n~1/2 Z (zo,—1 ®er) = N (0, E (zo—120 4 1 @ erey))
t=1

and the result follows by strict stationarity.

1.3 Proof of Theorem A

We use Lemma B1 throughout. For part (i), we start with the signal matrix:

~ /
1 - X'Z 1 )
X'Z _
= nite ( 3/2 th 1) 1/2%0 oy (1)

10



using part (i) of Lemma B1. The limit distribution of n~ () X’Z is given by Lemma 3.1(ii)
and equation (20) of PM. Note that all of the above normalized sums are bounded in probability

for all @ > 0. When o =1 in case P(ii),

1 _ 1 1
n 0 0

1
- <Qw+ / JCdJ’C) ot (25)
0
In the unit root case P(i), the limit distribution of n~(+P) X' Z can be obtained by substituting
C =01in (25):
1
nHﬂXZ: [Qour/ B dB’]C (26)

In the near-stationary case, > ;' z4—1 = O, (n1/2+°‘) and z,, = O, (nO‘/Q) with a < 1 by MP.

Equation (20) of PM then yields

1 - XZ
A 4 =

+0p (1) = = (Quu + Ve O) C,;l +0p (1). (27)

Combining (25), (26) and (27) and taking into account multiplication by —C ' yields Wy, of
Theorem A.

Next, we show that the presence of an intercept in (1) has no effect on the asymptotic

behavior of the £ Z matrix: using part (i) of Lemma B1

n n !
) ) 1 1
1+ _—(148)/2 5
IR = e (nngt) <WZZH)
t=1 =
~pyjagry L 1 Zn_
n Z——F 1w’ th LM
n 2 n 2

_ 1+ﬂ/225tzt L+ 0, ( ﬂ)

= n (02 25t22—1 +op (1) (28)
t=1

by Lemma 3.1(i) of PM. The limit distribution of n~(0+%)/2yec (§'Z> is then given by

~(1+6)/2 Z (-1 ®¢et) = N(0,Ve, ® Bee)
t=1

11



established by Lemma 3.2 of PM under INNOV(i) and Lemma B4(ii) above under INNOV (ii).
Lemma 3.2 of PM also establishes the asymptotic independence as n — oo between n~(+P)/2g 7
and n~ (8 X'Z. This completes the proof of part (i) of Theorem A.

For parts (ii)—(iv), 0 < o < 8 < 1. We first show that the presence of an intercept in (1) has
no effect on IVX limit theory. Using the fact that >, jzt—1 = O, (n%+“>, the signal matrix

can be written as

/
n_(l—‘,—a)K/Z — (1+OZ)X Z < g Ti— 1) <3 g 2t1>
5 nz o

= ) x g o ( f(lfa)nf(lfﬁ)ﬁ)' (29)

where the order of magnitude of ) ;" ; Z;—; follows from Lemma B1(ii). Using an identical

argument

n n !
- - 1 1
—(14a)/2 ot _ —(14a)/2 ~
n~ ) 2er 7 =)/ 2er 7 <n1/2 El 5,5) <n1+a/2 El Zt)
t= t=

= +2g77 4 0, (n—(l—a)/Qn—(l—ﬁ)/Q) , (30)

so both sample moment matrices n~ (14 X’ Z and n~(1+)/2€' Z are asymptotically equivalent to
n~(H) X' Z and n~ (1) €' Z respectively and the limit results of parts (ii) and (iii) of Theorem
A can be deduced by Theorem 3.7 of PM.

It remains to show part (iv) of the theorem that is not included in PM. By Lemma B2,

Vn (AIVX - A) = \/1%5'2 <711X/Z> B

—1
1 & 1<
= (\/ﬁzft%,t—l) (nsz,t—1$67t—l> +op(1) (31)
t=1 t=1

with 2o, defined in (9). Under Assumption INNOV(ii), (24) and Lemma B4(iii) imply that
Vv/nvec (AIVX — A) = N (0,V) where

V= <[E:1c0,1:v671]71 ® Im> E (20,120, ® €2¢5) ([Ex()’lwf)’l]*l ® Im> . (32)

Positive definiteness of the moment matrix £ (x071$6’1) is guaranteed by the positive definiteness

12



of Xee = E (e1€)). Under Assumption INNOV(i), conditional homoskedasticity and the 2 + ¢-
moment condition imposed on the martingale difference sequence e; are sufficient for the law of

large numbers (24). Also, a standard martingale central limit theorem yields

1

n
nz Zo,t— 1®€t :>N(0 E(l‘01$01)®2€€)
t:l

giving \/nvec (AIVX — A) ( Exo 1x0 1] -t ® ZEE) . Note that, if the sequence &; is con-

ditionally homoskedastic, the limit matrix V in (32) and [E:co,lem] g Yee agree.

1.4 Proof of Theorem 1

The “undemeaned” Wald statistic

WIVX = (HVGCA[VX — h)lég,l (Hvecfllvx — h)

1

Qu = H[(X'PX) " @S| 1
with P; = Z (Z’Z)71 Z' is known to satisfy Wryx = x2(q) as n — oo by Theorem 3.8 of
PM for all « > 0, i.e., all predictors belonging to classes P(i)-P(iii) under Assumption INNOV.
We need to prove that: (a) Wryx = x2(q) for stable regressors in P(iv) with o = 0 under
Assumption INNOV(i); (b) Wryx — Wryx = 0, (1), i.e., establish an asymptotic equivalence
between Wiy x in Theorem 1 and W]V x above.

For (a), letting ; be a stable regressor in P(iv) with o = 0 and using Lemma B2 repeatedly

we obtain

nQy = H

XX\t .
(£2)" o5,

by Assumption INNOV(i). Under the null hypothesis,

H +o0y(1) = Q= H [(E:L‘lxll)_l ® 255} o

&, = Q 1/2 (HvecAIVX h) <nQH)_1/2 Hvecy/n (A]VX — A)

= o) () ] S

= QY2N(0,Q) =4 N (0,1,)

13



and Wiy x = €.€, = x% (), where ¢ is the rank of the matrix H.

Having established that Wy x = x2(q) for all processes z; belonging to P(i)-P(iv) under
INNOV(i) and for z; belonging to P(i)-P(iii) under INNOV(ii), Theorem 1 will follow by es-
tablishing (b). In view of the form of Wy x and Wivx, Wivx — Wivx = op (1) is equivalent
to

HM _77®S..

sl <o (22 2

Note first that HQFMH — 0, (1) for all a > 0, so we need to compare the rate of n ||z, _1|* with

that of ||Z'Z

‘ and show that (33) is satisfied for each class P(i)-P(iv).

For 0 < 8 < «, part (i) of Lemma B1 yields

n 2

E Zt—1

t=1

|
nlza-1]? = -

since Z'Z = O, (n'*P). This establishes (33) for P(i)-P(iii) when 8 < o

It remains to show (33) when 0 < o < 3. Using part (ii) of Lemma B1,

2

1 o~
it =[S <0 () - (127

n
E Zt—1

t=1

since HZ’ZH = 0, (|| X'X||) = n'*e. This establishes (33), (b) and the theorem.

2. Additional Monte Carlo results

2.1 Finite—sample size for alternative values of autocorrelation coefficient ¢

Using the univariate DGP in Section 2.1 of the main body of the study, we examine the finite—
sample performance of the proposed IVX—-Wald statistic and the Q-statistic of CY using alter-
native degrees of autocorrelation in the error term of the autoregression (¢). Recall that we run
a 5% two—sided test under the null hypothesis Hy : A = 0 for each of these two statistics. We
consider sample sizes n = 100, 250, 500, 1000, residuals’ correlation 6 = —0.95, —0.5,0,0.5,0.95
and C' = 0,—5,—10,—20,—50. Table A1l presents the finite—sample size of these two statistics
for ¢ = 0.25. The Wald statistic appears to have size very close to 5% in all cases considered.

The Q-statistic appears to have the correct size for combinations of § € {—0.95,0,0.95} and

14



C € {0,—5,—10,—20} . However, for |§|] = 0.5 the Q-statistic becomes undersized, while for

|0] = 0.95 and C' = —50 it becomes severely oversized.
—Table A1l here—

Table A2 presents the corresponding simulation results for ¢ = —0.1. The main conclusions
regarding the comparison between the Wald statistic and the Q-statistic are very similar to the
ones drawn from Table Al. The Wald statistic appears to have size very close to 5%. The Q-
statistic has the correct size for § = 0, but it is severely oversized for low degrees of persistence
(C = —50) when || = 0.95, while for high degrees of persistence (—20 < C' < 0) and |§| = 0.5 it
appears to be undersized. The undersizing of the Q-statistic does not disappear as the sample

size increases.

—Table A2 here—

2.2 Power plots for n = 1000

In this subsection, we present the finite—sample power properties of the Wald, CY and JM
statistics for sample size n = 1000. Figure Al presents the power plots for § = —0.95, while
Figures A2 and A3 present the corresponding plots for 6 = —0.5 and § = 0. The conclusions on
the relative performance of the Wald and Q-statistic are identical to those obtained for n = 250
and discussed in the main body of the paper. In sum, the IVX-Wald test outperforms the Q-
statistic for all persistence and correlation scenarios apart from the unit root case (C' = 0) when
d € {—0.95,0}. For § = 0, the power plots of these two statistics are almost indistinguishable.
Finally, despite the increased sample size, the JM statistic still exhibits a significant lack of
power relative to the other two statistics. This problem is magnified as we move away from the

unit root case for all values of § considered.

—Figures Al to A3 here—

2.3 Power plots for autocorrelation coefficient ¢ = 0.5

In this subsection, we present the finite—sample power properties of the Wald and the Q-statistic
in the presence of autocorrelation in the error term of the autoregressive equation (¢). In

particular, the subsequent power plots are computed using ¢ = 0.5. Figure A4 presents the

15



power plots for sample size n = 250 and § = —0.95. In the unit root case (C' = 0), the Wald
statistic is more powerful for alternatives close to the null, but for alternatives farther away,
the Q-statistic becomes more powerful. For lower degrees of persistence, the Wald statistic
dominates the Q-statistic. Figure A5 presents the corresponding power comparison for n = 250
and 0 = —0.5. In this case, the Wald statistic dominates the Q-statistic in terms of power for
every degree of persistence considered. Finally, Figure A6 presents the corresponding power
plots for n = 250 and § = 0. The Q-statistic is more powerful than the Wald statistic in the
unit root case (C' = 0), but for lower degrees of persistence, the two statistics appear to have

almost exactly the same power.
—Figures A4-A6 here—

Figures A7, A8 and A9 present the corresponding power plots for these two statistics for
n = 1000, ¢ = 0.5 and residuals’ correlation coefficient § = —0.95, —0.5 and 0, respectively.
These plots point to the same conclusions as the ones derived from Figures A4-A6 that we

discussed above.

—Figures A7T-A9 here—

2.4 Alternative kernels for the estimation of the long—run covariance matrix

In this subsection, we examine the robustness of the finite—sample properties of the IVX-Wald
statistic with respect to the choice of kernel for the estimation of the long-run covariance matrix.!
In particular, apart from the Bartlett kernel that we use in the benchmark results, we alterna-
tively use: i) the Parzen kernel and ii) the Quadratic Spectral kernel. Figure A10 illustrates
the power of the IVX—Wald test for n = 250 and 6 = —0.95 using each of the aforementioned
kernels. In the unit root case (C' = 0), the Bartlett kernel appears to deliver marginally higher
power, while for the rest persistence scenarios, the powers derived from these kernels appear to
be almost exactly the same. Figures A11 and A12 present the corresponding power comparisons
for the Wald statistic across these three kernels using § = —0.5 and § = 0, respectively. In both

cases, the power plots are almost indistinguishable across the three kernels used.

—Figures A10-A12 here—

'We would like to thank an anonymous referee for suggesting this robustness check.

16



2.5 Alternative choice of lag length for the Newey—West estimator

In this subsection, we examine the robustness of the finite—sample properties of the IVX-Wald
statistic when alternative lag lengths are used for the Newey—West estimator of the long—run
covariance matrix.? In particular, apart from the truncation lag nl/3 that we use in the bench-
mark results, we alternatively consider the following truncation lags: 7) n'/4 and i1) n'/2, where
n is the sample size. Figure A13 illustrates the power of the Wald statistic for n = 250 and
0 = —0.95 using each of the aforementioned lag lengths. We observe that in the unit root case
(C = 0), the truncation lag n'/2 appears to yield the highest power. In the rest persistence
scenarios (C' < 0), the choice of truncation lag seems to yield no difference in terms of power.
This is also true regardless of the degree of regressor persistence for the case where § = —0.5,
presented in Figure A14, and the case where § = 0, presented in Figure A15. In both cases, the

power plots are almost indistinguishable across the three truncation lags used.
—Figures A13-A15 here—

Summarising the results presented in Figures A10-A15, the finite-sample properties of the
Wald statistic are not substantially affected by the choice of the kernel or the choice of the lag

length used in the estimation of the long—run covariance matrix.

2.6 Alternative values of § for the construction of instrument 2

In this subsection, we examine the effect of the value of parameter 5 used for the construction
of instruments Z on the finite-sample properties of the Wald statistic. Recalling that in our
setup 8 € (0,1), we consider 45 alternative values for 5 € {0.10,0.12,...,0.98}. The presented
simulation results are derived using sample size n = 500. For each value of 3 considered, we
calculate the finite-sample size of the Wald test under the null hypothesis Hy : A = 0 as well
as its power when the true value of A takes each of the following values: A € {0.02,0.04,0.06}.
As in the previous simulations, we consider various degrees of regressor persistence, i.e., C' €
{0,—5,—-10, —15, —20, —50}.

Figure A16 presents the rejection rates as a function of 5 for the case of § = —0.95. We

observe that the size of the test is very close to the nominal 5% level regardless of the value of

2We would like to thank the Editor for suggesting this robustness check.
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(5. This holds true for all cases of regressor persistence considered. This observation reaffirms in
finite samples the asymptotic properties of the IVX-Wald test for a very wide range of values of
B. With respect to the power of the test, we find that it increases monotonically as 8 increases,
since the rejection rate increases with § for each true value A > 0. A closer inspection of these
power plots suggests that starting from moderate values of 3, there are still considerable power
gains if we further increase S towards its upper boundary, especially when the true alternative A
is closer to the null. This crucial observation demonstrates that increasing the value of 5 offers
further power gains where we need them the most, that is for true values of A close to the null.

Figures A17 and A18 present the corresponding rejection rates when § = —0.5 and § = 0,
respectively. The conclusions derived from these Figures are very similar to the ones discussed
above for the case of § = —0.95. Given this evidence, we can confidently argue that high values
of B yield the highest level of power for the Wald test and, at the same time, yield size very
close to the nominal 5%. Therefore, in the empirical implementation of our testing procedure,

we use § = 0.95, which is among the highest values that 5 can take.

—Figures A16—-A18 here—

2.7 Finite—sample properties using conditionally heteroskedastic DGP

The DGP utilized in the benchmark Monte Carlo simulations assumed homoskedasticity for the
innovations of the predictive regression. In this section, we use an alternative DGP that allows
these innovations to be conditionally heteroskedastic. Recalling that the asymptotic results
for the proposed Wald statistic are valid under conditional heteroskedasticity too, we use a
heteroskedastic DGP to examine the finite—sample properties of the statistic and compare them
with the corresponding properties of the Q—statistic of CY.

In particular, we use the following GARCH(1,1) DGP for the innovations of the univariate

predictive regression:

gy = p+ Az + Ve (34)
ht = w+ Oélht_l + 615?,17 (35>

while the rest features of the DGP remain the same as in the benchmark case presented in
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Section 2.1 of the main body of the study.

To render the heteroskedastic DGP empirically relevant, we estimate regression (34) using
CRSP S&P 500 log excess returns as the regressand and the dividend yield as the regressor, and
fit a GARCH(1,1) model to the variance of the regression residuals. Using monthly data for the
full sample period, the estimated GARCH(1,1) coefficients are &; = 0.13 and 31 = 0.85.

Using this conditionally heteroskedastic DGP, Table A3 presents the finite—sample size of
the Wald and the Q-statistic for n = 100,250, 500,1000, § = —0.95,—0.5,0,0.5,0.95 and
C = 0,-5,—-10,—20,—50. We find that the Wald statistic exhibits no size distortion for all
combinations considered. The Q-statistic exhibits correct size for § = 0, but it is oversized for

the combination n = 100, |§| = 0.95 and C' = —50, while it is undersized when |4| = 0.5.
—Table A3 here—

The introduction of conditional heteroskedasticity in the innovations of the predictive re-
gression alters the comparative performance of the two statistics in terms of power relative to
the benchmark simulation results under homoskedasticity. Figure A19 presents the power of the
Wald and the Q-statistic under the conditionally heteroskedastic DGP, when § = —0.95 and
n = 1000. In this case, the Wald statistic dominates the Q-statistic for every degree of regressor
persistence considered. The same conclusion is derived from Figure A20, referring to the case
where § = —0.5. However, for the case where § = 0, presented in Figure A21, we find that in
the unit root case (C' = 0), the Q-statistic has higher power than the Wald statistic. For all
other degrees of regressor persistence (C' < 0), the two statistics appear to have the same power.

Very similar are the results for the other sample sizes, which are available upon request.

—Figures A19-A21 here—

2.8 Power plots for the long—horizon Wald statistic

In this subsection, we present the finite-sample power properties of the long—horizon Wald
statistic for sample size n = 1000 and horizons K = 12, 36,60 as well as for sample size n = 500
and horizons K = 4,12,20. Figure A22 shows the power of the long—horizon Wald statistic for
n = 1000 and correlation § = —0.95. We find that for all horizons considered, the power of the

statistic increases as the true value of A increases. Moreover, in each case, as the predictive
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horizon increases, the power of the statistic decreases. It should be also noted that the difference
in power across the horizons increases as the regressor persistence decreases. Figures A23 and
A24 present the corresponding power plots for 6 = —0.5 and § = 0, respectively, yielding very

similar conclusions.
—Figures A22-A24 here—

Figures A25 to A27 illustrate the corresponding power plots for n = 500, which exhibit very
similar patterns to the ones derived from the power plots for n = 1000; the power of the long—
horizon Wald statistic increases as the true value of A increases, while in each case, the power of
the statistic decreases as the predictive horizon increases. The loss of power due to the increase
of the horizon becomes relatively bigger when the persistence of the regressor decreases. To the
contrary, for a highly persistent regressor, this loss is small, implying that the Wald statistic is

very powerful even when very long predictive horizons are considered.

—Figures A25-A27 here—

3. Additional Empirical Results

3.1 Definitions of variables

Table A4 contains the definitions of the variables used as predictors in this study and an indica-
tive list of prior studies that have examined their predictive ability. In particular, we consider
the following twelve variables: T-bill rate (tbl), long-term yield (lty), term spread (tms), de-
fault yield spread (dfy), dividend—price ratio (d/p), dividend yield (d/y), earnings—price ratio
(e/p), dividend payout ratio (d/e), book—to—market value ratio (b/m), net equity expansion

(ntis), inflation rate (inf) and consumption—wealth ratio (cay).

—Table A4 here—

3.2 Regressors’ persistence properties with annual data

Table A5 reports the least squares point estimate of the autoregressive root fin and the results
of four unit root tests (ADF, DF-GLS, PP and KPSS) for each of the 12 predictors considered

in this study. The results are very similar to the ones reported for monthly and quarterly data
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in the main body of the study. The autoregressive roots of d/p, d/y, e/p, lty and b/m are
remarkably close to unity, while tbl, d/e and dfy also exhibit autoregressive roots greater than
0.9, demonstrating the very high degree of persistence of these regressors at the annual frequency
too. On the other hand, tms, cay and ntis, appear to be somewhat less persistent relative to
the quarterly frequency. Most importantly, the ambiguity regarding the predictors’ order of
integration remains unresolved and the unit root tests lead to conflicting conclusions for most
of them. There seems to be agreement only on that Ity and d/y have a unit root and that dfy
and cay are stationary. This evidence further highlights the difficulty in modeling the exact type
of persistence of these predictors at any frequency. The proposed IVX—-Wald test sidesteps this

problem by yielding robust inference with respect to their (uncertain) time series properties.

—Table A5 here—

3.3 Predictability tests with annual data

3.3.1 1-—period results This subsection presents the results from univariate predictability
tests using annual data for each of the 12 employed predictors. Results are reported in Table A6
for the full sample period, 1927-2012, with the exception of cay which becomes available after
1945. Our findings are very similar to the ones reported for quarterly data in the main body
of the study. In particular, according to the IVX-Wald test, we find that d/y, e/p and b/m
are significant predictors at the 10% level, while ntis is significant at the 5% level. Moreover,
we confirm that cay is highly significant using annual data too. Comparing these results with
the inference derived from CY’s Q-test, the most important difference is that the latter would
fail to indicate the significance of e/p and b/m. With respect to the standard t-ratio, the
main difference is that it would additionally indicate d/p as significant at the 10% level and
b/m at the 5% level due to its tendency to overreject the null of no predictability, especially
for predictors exhibiting a high degree of endogeneity. Finally, our main difference with the
inference derived from the JM statistic refers to the level of significance for various predictors.
Most importantly, the JM test would find cay to be significant only at the 10% level (p—value:
0.08); it would additionally indicate dfy to be marginally significant, while we find this variable

to be insignificant.
—Table A6 here—
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3.3.2 Long-horizon results This subsection presents the results from long—horizon univari-
ate predictability tests using annual data. We use predictive horizons up to 5 years. Results are
reported in Table A7. Panel A contains the full sample period results, while Panel B reports
the corresponding results for the post—1952 period. With respect to the full sample period,
we find that predictability becomes weaker, not stronger, as the predictive horizon increases.
The only exception is tms which becomes marginally significant as we examine horizons beyond
two years. None of the examined predictors is significant at the 5% level when we consider
horizons beyond three years. Moreover, in comparison to the 1—year results in Table A6, d/y,
e/p and b/m, which were significant at the 10% level, eventually become insignificant for longer
predictive horizons. The results for the post—1952 period are even more striking. We find no
evidence of predictability at any horizon beyond one year with two exceptions: i) cay remains
significant at the 5% level even as we increase the horizon to 5 years and ii) d/e is significant
at longer horizons, but only marginally. Overall, results based on annual data corroborate the
results in the main body of the study. Predictability becomes overall weaker, not stronger, as
the examined horizon increases, while it almost disappears in the post—1952 period, with the
exception of cay, which is the only predictor that remains significant at the 5% level for all

horizons considered.

—Table A7 here—
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Table Al

Finite—sample sizes with autocorrelation coefficient ¢ =0.25 in the residuals of the autoregression
This table presents finite—sample sizes, testing the null hypothesis H, : A=0 versus the alternative H, : A = O in (22) when the autocorrelation coefficient in the residuals of the

autoregression (23) is ¢ =0.25. Wy o5 corresponds to the rejection rate for the Wald statistic, defined in (19), with 5% nominal size and Qg s corresponds to the rejection rate resulting

from the 95% confidence interval for the Campbell and Yogo (2006) Q-test. Results are reported for different degrees of correlation between the residuals of regressions (22) and
(23) in the main body of the study, & =-0.95, —0.5, 0, 0.5 and 0.95, different sample sizes n= 100, 250, 500 and 1,000 and for different local-to-unity parameters C= 0, —5, —10,
—15, —20 and —50, which in each sample size case correspond to different autoregressive roots (R,) reported in the third column. The reported results are based on the Monte Carlo

simulation described in Section 2.1 of the main body of the study and the average rejection rates are calculated over 10,000 repetitions.

6 =-0.95 6 =-0.50 6 =0.50 0=0.95

n C Ra Wo.05 Qo.0s Wo 05 Qo5 Wo.0s Qo0 Wo .05 Qo.0s Wo.05 Qo0
100 0 1.000 0.062 0.048 0.062 0.040 0.045 0.047 0.062 0.039 0.066 0.050
-5 0.950 0.067 0.045 0.066 0.039 0.054 0.049 0.061 0.035 0.073 0.053

-10 0.900 0.064 0.051 0.060 0.036 0.056 0.049 0.061 0.036 0.065 0.053

-20 0.800 0.055 0.071 0.059 0.040 0.058 0.051 0.058 0.039 0.060 0.073

=50 0.500 0.057 0.173 0.054 0.065 0.060 0.055 0.059 0.068 0.056 0.170

250 0 1.000 0.061 0.042 0.057 0.036 0.052 0.049 0.054 0.036 0.060 0.043
-5 0.980 0.063 0.044 0.060 0.033 0.053 0.049 0.056 0.031 0.066 0.045

-10 0.960 0.062 0.044 0.056 0.032 0.051 0.051 0.054 0.029 0.062 0.047

-20 0.920 0.064 0.071 0.052 0.028 0.054 0.049 0.054 0.031 0.063 0.061

-50 0.800 0.055 0.218 0.052 0.063 0.049 0.047 0.055 0.063 0.053 0.210

500 0 1.000 0.072 0.054 0.066 0.044 0.050 0.051 0.061 0.039 0.073 0.054
-5 0.990 0.072 0.053 0.063 0.040 0.053 0.049 0.062 0.037 0.073 0.053

-10 0.980 0.068 0.047 0.060 0.036 0.054 0.050 0.061 0.034 0.071 0.052

-20 0.960 0.063 0.059 0.055 0.032 0.056 0.051 0.056 0.033 0.061 0.056

-50 0.900 0.053 0.150 0.051 0.053 0.055 0.052 0.056 0.055 0.055 0.155

1000 0 1.000 0.054 0.039 0.056 0.037 0.048 0.048 0.055 0.034 0.055 0.041
-5 0.995 0.064 0.044 0.057 0.032 0.050 0.050 0.050 0.030 0.060 0.044

-10 0.990 0.061 0.044 0.056 0.032 0.050 0.048 0.054 0.030 0.062 0.048

-20 0.980 0.056 0.046 0.055 0.030 0.056 0.053 0.051 0.030 0.060 0.047

-50 0.950 0.058 0.097 0.055 0.036 0.052 0.049 0.054 0.035 0.052 0.101
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Table A2
Finite—sample sizes with autocorrelation coefficient ¢ =—0.1 in the residuals of the autoregression

This table presents finite—sample sizes, testing the null hypothesis H, : A=0 versus the alternative H, : A = O in (22) when the autocorrelation coefficient in the residuals of the

autoregression (23) is ¢ =—0.1. Wy s corresponds to the rejection rate for the Wald statistic, defined in (19), with 5% nominal size and Qs corresponds to the rejection rate

resulting from the 95% confidence interval for the Campbell and Yogo (2006) Q-test. Results are reported for different degrees of correlation between the residuals of regressions
(22) and (23) in the main body of the study, & =—0.95,-0.5, 0, 0.5 and 0.95, different sample sizes n= 100, 250, 500 and 1,000 and for different local-to-unity parameters C= 0, -5,
—10, =15, =20 and —50, which in each sample size case correspond to different autoregressive roots (R,) reported in the third column. The reported results are based on the Monte
Carlo simulation described in Section 2.1 of the main body of the study and the average rejection rates are calculated over 10,000 repetitions.

6 =-0.95 6 =-0.50 0=0 6 =0.50 0=0.95

n C Ra Wo.05 Qo.0s Wo 05 Qo5 Wo.0s Qo0 Wo .05 Qo.0s Wo.05 Qo0
100 0 1.000 0.067 0.053 0.063 0.041 0.052 0.052 0.062 0.042 0.065 0.048
-5 0.950 0.067 0.056 0.058 0.038 0.053 0.047 0.060 0.039 0.072 0.063

-10 0.900 0.064 0.064 0.063 0.044 0.056 0.050 0.057 0.040 0.064 0.064

-20 0.800 0.060 0.098 0.052 0.041 0.054 0.047 0.057 0.046 0.061 0.103

=50 0.500 0.055 0.323 0.056 0.126 0.054 0.049 0.053 0.119 0.055 0.306

250 0 1.000 0.063 0.044 0.060 0.037 0.051 0.051 0.053 0.034 0.055 0.040
-5 0.980 0.061 0.045 0.058 0.036 0.054 0.050 0.055 0.033 0.063 0.045

-10 0.960 0.062 0.051 0.052 0.029 0.054 0.051 0.056 0.036 0.058 0.047

-20 0.920 0.057 0.071 0.053 0.034 0.056 0.051 0.056 0.035 0.058 0.070

-50 0.800 0.052 0.217 0.054 0.067 0.051 0.048 0.047 0.062 0.052 0.225

500 0 1.000 0.059 0.042 0.056 0.037 0.050 0.049 0.052 0.036 0.058 0.041
-5 0.990 0.062 0.046 0.056 0.032 0.052 0.053 0.050 0.030 0.061 0.044

-10 0.980 0.065 0.046 0.055 0.032 0.050 0.049 0.052 0.031 0.062 0.045

-20 0.960 0.060 0.053 0.050 0.030 0.054 0.053 0.051 0.029 0.057 0.055

-50 0.900 0.052 0.164 0.048 0.047 0.050 0.048 0.054 0.053 0.056 0.171

1000 0 1.000 0.059 0.042 0.053 0.031 0.050 0.049 0.052 0.037 0.054 0.040
-5 0.995 0.063 0.043 0.055 0.030 0.050 0.049 0.054 0.030 0.062 0.046

-10 0.990 0.058 0.044 0.053 0.030 0.051 0.050 0.054 0.030 0.052 0.041

-20 0.980 0.058 0.045 0.053 0.030 0.052 0.051 0.057 0.032 0.057 0.049

-50 0.950 0.051 0.127 0.051 0.040 0.051 0.048 0.054 0.040 0.052 0.126
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Table A3
Finite—sample sizes using a conditionally heteroskedastic DGP for stock returns
This table presents finite—sample sizes, testing the null hypothesis H, : A=0 versus the alternative H, : A= O in (34) of the Online Appendix when the DGP for stock returns is

conditionally heteroskedastic and there is no autocorrelation (¢ =0) in the residuals of the autoregression. In particular, the residuals of the predictive regression for stock returns are
conditionally heteroskedastic, following a GARCH (1,1) process. The employed parameter values are derived from fitting a GARCH (1,1) to the residuals estimated from regressing
S&P 500 value-weighted log excess returns on dividend yield, using monthly data for the period 1927—2012. W, o5 corresponds to the rejection rate for the Wald statistic, defined in
(19), with 5% nominal size and Qg5 corresponds to the rejection rate resulting from the 95% confidence interval for the Campbell and Yogo (2006) Q-test. Results are reported for
different degrees of correlation between the residuals, & =—0.95, -0.5, 0, 0.5 and 0.95, different sample sizes n= 100, 250, 500 and 1,000 and for different local-to-unity parameters
C=0,-5,-10, —15, —20 and —50, which in each sample size case correspond to different autoregressive roots (R,) reported in the third column. The reported results are based on the
Monte Carlo simulation described in Section 2.7 of the Online Appendix and the average rejection rates are calculated over 10,000 repetitions.

6 =-0.95 6 =-0.50 o0=0 6 =0.50 6=0.95

n c Ry Wo.05 Qo0 Wo 05 Qo.os Wo.0s Qo.0s Wo.05 Qo.0s Wo.05 Qo.0s
100 0 1.000 0.066 0.046 0.062 0.041 0.051 0.053 0.064 0.043 0.062 0.040
-5 0.950 0.058 0.044 0.058 0.039 0.054 0.049 0.059 0.041 0.061 0.037

-10 0.900 0.057 0.041 0.059 0.039 0.054 0.048 0.060 0.041 0.058 0.039

-20 0.800 0.056 0.050 0.055 0.043 0.055 0.051 0.058 0.048 0.053 0.050

=50 0.500 0.050 0.140 0.051 0.093 0.052 0.051 0.050 0.091 0.050 0.135

250 0 1.000 0.053 0.036 0.053 0.038 0.051 0.052 0.059 0.043 0.057 0.036
-5 0.980 0.058 0.034 0.051 0.032 0.053 0.051 0.053 0.035 0.056 0.033

-10 0.960 0.052 0.030 0.051 0.033 0.053 0.050 0.053 0.035 0.058 0.033

-20 0.920 0.047 0.031 0.049 0.030 0.052 0.048 0.056 0.036 0.047 0.032

=50 0.800 0.048 0.070 0.045 0.056 0.056 0.055 0.047 0.053 0.045 0.067

500 0 1.000 0.053 0.032 0.048 0.034 0.050 0.052 0.055 0.035 0.049 0.033
-5 0.990 0.055 0.032 0.051 0.032 0.048 0.047 0.054 0.034 0.053 0.031

-10 0.980 0.049 0.028 0.053 0.034 0.051 0.050 0.051 0.032 0.053 0.030

-20 0.960 0.050 0.030 0.049 0.030 0.053 0.050 0.053 0.033 0.047 0.028

-50 0.900 0.045 0.043 0.048 0.041 0.049 0.048 0.047 0.040 0.044 0.042

1000 0 1.000 0.048 0.033 0.051 0.035 0.048 0.048 0.052 0.036 0.047 0.031
-5 0.995 0.056 0.029 0.051 0.032 0.055 0.054 0.058 0.036 0.054 0.029

-10 0.990 0.054 0.030 0.056 0.034 0.049 0.049 0.052 0.031 0.049 0.027

-20 0.980 0.047 0.024 0.046 0.027 0.057 0.054 0.050 0.033 0.045 0.026

-50 0.950 0.043 0.028 0.046 0.031 0.053 0.053 0.043 0.028 0.044 0.029
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Table A4
Definitions of predictive regressors

This table reports the variables used as predictive regressors in this study, their definition and some prior studies that have examined their predictive ability.

Variable

Definition

Indicative list of prior studies

Dividend payout ratio (d/e)

Earnings-price ratio (e/p)

Long-term yield (Ity)

T-bill rate (tbl)

Term spread (tms)
Dividend-price ratio (d/p)

Dividend yield (d/y)

Default yield spread (dfy)
Book-to-market value ratio (b/m)

Net equity expansion (ntis)

Inflation rate (inf)

Consumption-wealth ratio (cay)

Difference between the log of dividends and the log of
earnings

Difference between the log of earnings and the log of stock
prices. Earnings are calculated using a 12-month rolling
sum of earnings of S&P 500 companies

Long-term US government bond yield from Ibbotson's
Stocks, Bonds, Bills and Inflation Yearbook

3-month US Treasury bill rate taken from FRED. For the
period before 1934 it is extracted from the NBER
Macrohistory database

Difference between the long-term yield and the T-bill rate
Difference between the log of dividends and the log of
stock prices. Dividends are calculated using a 12-month
rolling sum of dividends paid on the S&P 500 index
Difference between the log of dividends and the log of
lagged stock prices

Difference between the BAA and AAA-rated corporate
bond yields taken from FRED

Ratio of book value to market value for the DJIA

Ratio of the 12-month moving sum of net equity issues by
NYSE listed stocks divided by the total end-of-year market
capitalization of these stocks

Based on the Consumer Price Index from the Bureau of
Labor Statistics

Transitory deviation of consumption from its cointegrating
relationship with asset holdings and labor income

Lamont (1998)

Campbell and Shiller (1988), Fama and French (1988), Pesaran and
Timmermann (1995), Lamont (1998), Lewellen (2004), Ang and
Bekaert (2007), Campbell and Thompson (2008)

Keim and Stambaugh (1986), Fama and French (1989), Pontiff and
Schall (1998), Torous et al. (2004), Campbell and Yogo (2006)

Pesaran and Timmermann (1995), Pontiff and Schall (1998),
Torous et al. (2004), Campbell and Yogo (2006), Ang and Bekaert
(2007), Avramov (2002), Campbell and Thompson (2008)

As for the long-term yield

Rozeff (1984), Campbell (1987), Campbell and Shiller (1988),
Fama and French (1988), Hodrick (1992), Lamont (1998),
Stambaugh (1999), Wolf (2000), Goyal and Welch (2003),
Lewellen (2004), Torous et al. (2004), Lettau and Ludvigson
(2005), Campbell and Yogo (2006), Ang and Bekaert (2007),
Campbell and Thompson (2008)

Fama and French (1989), Avramov (2002), Torous et al. (2004),
Campbell and Thompson (2008)

Kothari and Shanken (1997), Pontiff and Schall (1998), Avramov
(2002), Lewellen (2004), Campbell and Thompson (2008)
Boudoukh et al. (2007) use net payout yield, Welch and Goyal
(2008)

Fama and Schwert (1977), Fama (1981), Welch and Goyal (2008)

Lettau and Ludvigson (2001), Welch and Goyal (2008)
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Table A5

Unit root tests for predictive regressors—Annual data

This table presents the results of unit root tests for the following list of financial and economic variables defined in Section
3 of the main body of the study: Dividend payout ratio (d/e), long-term yield (lty), dividend yield (d/y), dividend price
ratio (d/p), T-bill rate (tbl), earnings price ratio (e/p), book-to-market value ratio (b/m), default yield spread (dfy), net

equity expansion (ntis), term spread (tms), inflation rate (inf) and consumption-wealth ratio (cay). F\A’n corresponds to the

least squares point estimate of the AR(1): X, = R X, +U,. ADF stands for the augmented Dickey-Fuller test statistic,

DF-GLS refers to the Elliot et al. (1996) Dickey-Fuller-GLS test statistic, PP stands for the Phillips-Perron test statistic
and KPSS refers to the Kwiatkowski et al. (1992) test statistic. The Bayesian Information Criterion has been been used to
select the optimal lag length for ADF and DF-GLS test statistics. The sample period is 1927-2012. *, ** and *** imply
rejection of the null hypothesis of a unit root (for ADF, DF-GLS and PP) or stationarity (for KPSS) at 10%, 5% and 1%

level respectively.

R, ADF DF-GLS PP KPSS
Dividend payout ratio 0.923 —4.498*** —4 525*** —4.403*** 1.026***
Long-term yield 0.989 —1.259 -1.227 —1.153 0.528**
Dividend yield 1.000 -1.621 -1.223 —1.667 0.764***
Dividend-price ratio 1.000 —2.219 —1.884* —2.025 0.901%**
T-bill rate 0.953 -1.763 —1.809* -1.894 0.456*
Earnings-price ratio 0.996 —3.617*** —3.180*** —3.570%** 0.407*
Book-to-market value ratio 0.973 —2.606* —2.484** —2.614* 0.515**
Default yield spread 0.913 —3.758*** —3.719%** —3.787*** 0.223
Net equity expansion 0.681 —5.128*** —2.877*** —4.891%** 0.633**
Term spread 0.829 —4.565%** —4.064*** —4.234%** 0.350*
Inflation rate 0.771 —2.230 —1.477 —4.213%** 0.325
Consumption-wealth ratio 0.706 —3.521** —2.142** —3.827*** 0.120
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Table A6

Univariate predictive regressions—Annual data

This table presents the results of univariate predictive regression models, as in equation (1), during the sample period 1927-2012. The dependent variable is the annual S&P
500 value-weighted log excess returns and the lagged persistent regressor is each of the following variables defined in Section 3 of the main body of the study: Dividend
payout ratio (d/e), long-term yield (Ity), dividend yield (d/y), dividend price ratio (d/p), T-bill rate (tbl), earnings price ratio (e/p), book-to-market value ratio (b/m), default
yield spread (dfy), net equity expansion (ntis), term spread (tms), inflation rate (inf) and consumption-wealth ratio (cay). The sample period for cay is 1945-2012. AOLS
stands for the least squares slope coefficient estimated via regression model (1), while t_ ¢ is the corresponding t-statistic under the null hypothesis that A is equal to zero
(i.e, no predictability). A , defined in (17), stands for the slope coefficient for the predictive regression (16) estimated via the proposed instrumental variable (IVX)

approach, while IVX-Wald refers to the Wald statistic, defined in equation (19), under the null hypothesis that the slope coefficient A is equal to zero. 5 denotes the
correlation coefficient between the residuals of regression models (1) and (2). *, ** and *** imply rejection of the null hypothesis at 10%, 5% and 1% level respectively. CY
90% CI stands for the 90% Bonferroni confidence interval for the bias-corrected scaled least squares slope coefficient of the predictive regression using the Q-test of

Campbell and Yogo (2006). Bold fonts indicate rejection of the null hypothesis of no predictability at the 10% level. JM reports the p-value for the 7;5_05 statistic of Jansson
and Moreira (2006) under the null hypothesis of no predictability.

Regressors Ags toss Ax IVX-Wald 5 CY 90% ClI M
Dividend payout ratio 0.0142 0.21 0.0059 0.008 —0.325 —0.146 0.188 0.15
Long-term yield —0.4464 —0.56 —0.4494 0.301 —0.044 —0.070 0.038 0.40
Dividend yield 0.0887 1.84* 0.0985 3.579%* 0.051 0.004 0.130 0.02%*
Dividend-price ratio 0.0775 1.67* 0.0823 2.635 —0.816 —0.026 0.181 0.42
T-bill rate —0.7904 -1.13 —0.7593 1.154 0.127 —0.142 0.029 0.35
Earnings-price ratio 0.0878 1.69* 0.0882 2.849%* —0.248 —0.001 0.268 0.03**
Book-to-market value ratio 0.1718 2.11** 0.1571 3.646* —-0.797 —0.000 0.235 0.03**
Default yield spread 0.5537 0.20 0.0789 0.001 —0.626 -0.117 0.204 0.09*
Net equity expansion —1.6430 —2.09** —2.0374 4.660** 0.101 -0.356 —0.046 0.05%*
Term spread 2.1038 1.38 2.0318 1.755 —0.135 -0.029 0.271 0.33
Inflation rate 0.1704 0.32 0.1991 0.131 —0.024 —0.121 0.127 0.47
Consumption-wealth ratio 2.3950 2.88*** 2.6013 8.238*** —0.408 0.008 0.253 0.08*
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Table A7

Long—horizon univariate predictive regressions—Annual data

This table presents the results of long-horizon univariate predictive regression models, as in equation (30), during the sample periods 1927-2012 (Panel A) and 1952-2012 (Panel
B), for various horizons (K-yrs). The dependent variable is the cumulative S&P 500 value-weighted log excess return from year t to year t+K-1, corresponding to a horizon of K
years, and the lagged persistent regressor is each of the following variables defined in Section 3 of the main body of the study: Dividend payout ratio (d/e), long-term yield (lty),
dividend yield (d/y), dividend price ratio (d/p), T-bill rate (tbl), earnings price ratio (e/p), book-to-market value ratio (b/m), default yield spread (dfy), net equity expansion (ntis),
term spread (tms), inflation rate (inf) and consumption-wealth ratio (cay). The table reports the long-horizon Wald statistic, defined in equation (34), under the null hypothesis that
the slope coefficient of the long-horizon univariate predictive regression estimated via the proposed instrumental variable (IVX) approach, is equal to zero (i.e., no predictability). *,
** and *** imply rejection of the null hypothesis at 10%, 5% and 1% level respectively.

Panel A: 1927-2012

K-yrs d/e Ity dly d/p tbl elp b/m dfy ntis tms inf
2 0.628 0.088 2.986* 3.882** 0.851 2.626 3.698* 0.189 6.540** 2.435 0.138
3 0.503 0.066 2511 3.292* 0.789 2.540 3.140* 0.117 4.821** 2.802* 0.151
4 0.735 0.049 2.074 3.320* 0.700 2.469 3.124* 0.262 3.532* 3.135* 0.194
5 0.640 0.026 1.882 2.997* 0.499 2431 2.440 0.185 2.841* 2.870* 0.326

Panel B: 1952-2012

K-yrs d/e Ity dly d/p tbl elp b/m dfy ntis tms inf cay
2 3.122* 0.032 1.200 1.855 0.680 0.507 0.256 0.375 0.269 2.224 0.716 T1.772%**
3 3.151* 0.022 1.239 1.350 0.410 0.469 0.049 0.015 0.092 1.510 0.704 6.113**
4 4.534** 0.000 1.308 1.125 0.289 0.339 0.044 0.093 0.048 1.982 0.692 5.581**
5 3.306* 0.052 1.159 0.986 0.089 0.561 0.100 0.036 0.046 2.246 0.293 4.362**
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Figure Al

Power plots for sample size n=1,000 and residuals’ correlation coefficient 6 =—0.95

This figure shows the rejection rates for tests of the null hypothesis H, : A=0 versus the alternative H, : A= 0 in (22)
as the true value of A increases. The solid curve (Wald, gs) illustrates the rejection rate we get using the Wald test, defined

in equation (19), with 5% nominal size (horizontal line). The dashed curve (CYQqs) illustrates the rejection rate using the
95% confidence interval of the Campbell and Yogo (2006) Q-test. The dash-dot curve (JMggs) illustrates the rejection rate

using the ”;.os statistic of Jansson and Moreira (2006). Each panel corresponds to a different local-to-unity parameter C=
0, =5, =10, —15, =20 and —50. These rejection rates have been calculated using Monte Carlo simulations described in
Section 2.1 with 10,000 repetitions for a sample size of n=1,000, correlation coefficient between the residuals of
regressions (22) and (23) ¢ =—0.95 and no autocorrelation in the residuals of the autoregressive equation, i.e., ¢ =0 in
(24).
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Figure A2

Power plots for sample size n=1,000 and residuals’ correlation coefficient 6 =—0.5

This figure shows the rejection rates for tests of the null hypothesis H, : A=0 versus the alternative H, : A= 0 in (22)
as the true value of A increases. The solid curve (Wald, gs) illustrates the rejection rate we get using the Wald test, defined

in equation (19), with 5% nominal size (horizontal line). The dashed curve (CYQqs) illustrates the rejection rate using the
95% confidence interval of the Campbell and Yogo (2006) Q-test. The dash-dot curve (JMggs) illustrates the rejection rate

using the ”;.os statistic of Jansson and Moreira (2006). Each panel corresponds to a different local-to-unity parameter C=
0, =5, =10, —15, =20 and —50. These rejection rates have been calculated using Monte Carlo simulations described in
Section 2.1 with 10,000 repetitions for a sample size of n=1,000, correlation coefficient between the residuals of
regressions (22) and (23) ¢ =—0.5 and no autocorrelation in the residuals of the autoregressive equation, i.e., ¢ =0 in
(24).
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Figure A3

Power plots for sample size n=1,000 and residuals’ correlation coefficient 6 =0

This figure shows the rejection rates for tests of the null hypothesis H, : A=0 versus the alternative H, : A= 0 in (22)
as the true value of A increases. The solid curve (Wald, gs) illustrates the rejection rate we get using the Wald test, defined

in equation (19), with 5% nominal size (horizontal line). The dashed curve (CYQqs) illustrates the rejection rate using the
95% confidence interval of the Campbell and Yogo (2006) Q-test. The dash-dot curve (JMggs) illustrates the rejection rate

using the ”;.os statistic of Jansson and Moreira (2006). Each panel corresponds to a different local-to-unity parameter C=
0, =5, =10, —15, =20 and —50. These rejection rates have been calculated using Monte Carlo simulations described in
Section 2.1 with 10,000 repetitions for a sample size of n=1,000, correlation coefficient between the residuals of
regressions (22) and (23) 0 =0 and no autocorrelation in the residuals of the autoregressive equation, i.e., ¢ =0 in (24).
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Figure A4
Power plots for sample size n=250, residuals’ correlation coefficient & =—0.95 and autocorrelation

coefficient ¢ =0.5 in the residuals of the autoregression

This figure shows the rejection rates for tests of the null hypothesis H, : A= 0 versus the alternative H, : A= 0 in (22)

as the true value of A increases. The solid curve (Waldggs) illustrates the rejection rate we get using the Wald test, defined
in equation (19), with 5% nominal size (horizontal line). The dashed curve (CYQgs) illustrates the rejection rate using the
95% confidence interval of the Campbell and Yogo (2006) Q-test. Each panel corresponds to a different local-to-unity
parameter C= 0, —5, —10, —15, =20 and —50. These rejection rates have been calculated using Monte Carlo simulations
described in Section 2.1 of the main body of the study with 10,000 repetitions for a sample size of n=250, correlation
coefficient between the residuals of regressions (22) and (23) & =—0.95 and autocorrelation coefficient ¢ =0.5 in the

residuals of the autoregression (23).
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Figure A5
Power plots for sample size n=250, residuals’ correlation coefficient 0 =-0.5 and autocorrelation

coefficient ¢ =0.5 in the residuals of the autoregression
This figure shows the rejection rates for tests of the null hypothesis H, : A= 0 versus the alternative H, : A= 0 in (22)

as the true value of A increases. The solid curve (Waldggs) illustrates the rejection rate we get using the Wald test, defined
in equation (19), with 5% nominal size (horizontal line). The dashed curve (CYQqgs) illustrates the rejection rate using the
95% confidence interval of the Campbell and Yogo (2006) Q-test. Each panel corresponds to a different local-to-unity
parameter C= 0, =5, —10, —15, =20 and —50. These rejection rates have been calculated using Monte Carlo simulations
described in Section 2.1 of the main body of the study with 10,000 repetitions for a sample size of n=250, correlation
coefficient between the residuals of regressions (22) and (23) & =—0.5 and autocorrelation coefficient ¢ =0.5 in the

residuals of the autoregression (23).
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Figure A6
Power plots for sample size n=250, residuals’ correlation coefficient 0 =0 and autocorrelation coefficient

¢ =0.5 in the residuals of the autoregression
This figure shows the rejection rates for tests of the null hypothesis H, : A= 0 versus the alternative H, : A= 0 in (22)

as the true value of A increases. The solid curve (Waldggs) illustrates the rejection rate we get using the Wald test, defined
in equation (19), with 5% nominal size (horizontal line). The dashed curve (CYQgs) illustrates the rejection rate using the
95% confidence interval of the Campbell and Yogo (2006) Q-test. Each panel corresponds to a different local-to-unity
parameter C= 0, =5, —10, —15, =20 and —50. These rejection rates have been calculated using Monte Carlo simulations
described in Section 2.1 of the main body of the study with 10,000 repetitions for a sample size of n=250, correlation
coefficient between the residuals of regressions (22) and (23) & =0 and autocorrelation coefficient ¢ =0.5 in the residuals

of the autoregression (23).
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Figure A7
Power plots for sample size n=1,000, residuals’ correlation coefficient 0 =—0.95 and autocorrelation

coefficient ¢ =0.5 in the residuals of the autoregression
This figure shows the rejection rates for tests of the null hypothesis H, : A= 0 versus the alternative H, : A= 0 in (22)

as the true value of A increases. The solid curve (Waldggs) illustrates the rejection rate we get using the Wald test, defined
in equation (19), with 5% nominal size (horizontal line). The dashed curve (CYQgs) illustrates the rejection rate using the
95% confidence interval of the Campbell and Yogo (2006) Q-test. Each panel corresponds to a different local-to-unity
parameter C= 0, —5, —10, —15, =20 and —50. These rejection rates have been calculated using Monte Carlo simulations
described in Section 2.1 of the main body of the study with 10,000 repetitions for a sample size of n=1,000, correlation
coefficient between the residuals of regressions (22) and (23) & =—0.95 and autocorrelation coefficient ¢ =0.5 in the

residuals of the autoregression (23).
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Figure A8
Power plots for sample size n=1,000, residuals’ correlation coefficient 0 =—0.5 and autocorrelation

coefficient ¢ =0.5 in the residuals of the autoregression
This figure shows the rejection rates for tests of the null hypothesis H, : A= 0 versus the alternative H, : A= 0 in (22)

as the true value of A increases. The solid curve (Waldggs) illustrates the rejection rate we get using the Wald test, defined
in equation (19), with 5% nominal size (horizontal line). The dashed curve (CYQgs) illustrates the rejection rate using the
95% confidence interval of the Campbell and Yogo (2006) Q-test. Each panel corresponds to a different local-to-unity
parameter C= 0, —5, —10, —15, =20 and —50. These rejection rates have been calculated using Monte Carlo simulations
described in Section 2.1 of the main body of the study with 10,000 repetitions for a sample size of n=1,000, correlation
coefficient between the residuals of regressions (22) and (23) & =—0.5 and autocorrelation coefficient ¢ =0.5 in the

residuals of the autoregression (23).
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Figure A9
Power plots for sample size n=1,000, residuals’ correlation coefficient 0 =0 and autocorrelation

coefficient ¢ =0.5 in the residuals of the autoregression
This figure shows the rejection rates for tests of the null hypothesis H, : A= 0 versus the alternative H, : A= 0 in (22)

as the true value of A increases. The solid curve (Waldggs) illustrates the rejection rate we get using the Wald test, defined
in equation (19), with 5% nominal size (horizontal line). The dashed curve (CYQgs) illustrates the rejection rate using the
95% confidence interval of the Campbell and Yogo (2006) Q-test. Each panel corresponds to a different local-to-unity
parameter C= 0, —5, —10, —15, =20 and —50. These rejection rates have been calculated using Monte Carlo simulations
described in Section 2.1 of the main body of the study with 10,000 repetitions for a sample size of n=1,000, correlation
coefficient between the residuals of regressions (22) and (23) & =0 and autocorrelation coefficient ¢ =0.5 in the residuals

of the autoregression (23).
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Figure A10

Power plots for sample size n=250 and residuals’ correlation coefficient 0 =—0.95 using different kernels
for the estimation of the long—run covariance matrix
This figure shows the rejection rates for tests of the null hypothesis H, : A= 0 versus the alternative H, : A= 0 in (22)

as the true value of A increases. The solid curve (Waldo s, sartierr) illustrates the rejection rate we get using the Wald test,
defined in equation (19), with 5% nominal size (horizontal line), when the Bartlett kernel is used to estimate the long-run
covariance matrix (& la Newey-West). The dashed curve (Waldggs parzen) SHOWS the corresponding rejection rate using the
Parzen kernel, while the dotted curve (Waldg s, os) shows the corresponding rejection rate using the Quadratic Spectral
kernel. Each panel corresponds to a different local-to-unity parameter C= 0, —5, —10, —15, =20 and —50. These rejection
rates have been calculated using Monte Carlo simulations described in Section 2.1 of the main body of the study with
10,000 repetitions for a sample size of n=250, correlation coefficient between the residuals of regressions (22) and (23)
& =—0.95 and autocorrelation coefficient ¢ =0 in the residuals of the autoregression (23).
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Figure All

Power plots for sample size n=250 and residuals’ correlation coefficient & =—0.5 using different kernels
for the estimation of the long-run covariance matrix

This figure shows the rejection rates for tests of the null hypothesis H, : A= 0 versus the alternative H, : A= 0 in (22)

as the true value of A increases. The solid curve (Waldo s, sartierr) illustrates the rejection rate we get using the Wald test,
defined in equation (19), with 5% nominal size (horizontal line), when the Bartlett kernel is used to estimate the long-run
covariance matrix (& la Newey-West). The dashed curve (Waldggs parzen) ShOWS the corresponding rejection rate using the
Parzen kernel, while the dotted curve (Waldg s, os) shows the corresponding rejection rate using the Quadratic Spectral
kernel. Each panel corresponds to a different local-to-unity parameter C= 0, —5, —10, —15, =20 and —50. These rejection
rates have been calculated using Monte Carlo simulations described in Section 2.1 of the main body of the study with
10,000 repetitions for a sample size of n=250, correlation coefficient between the residuals of regressions (22) and (23)
& =—0.5 and autocorrelation coefficient ¢ =0 in the residuals of the autoregression (23).
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Figure Al12

Power plots for sample size n=250 and residuals’ correlation coefficient 0 =0 using different kernels for
the estimation of the long-run covariance matrix
This figure shows the rejection rates for tests of the null hypothesis H, : A= 0 versus the alternative H, : A= 0 in (22)

as the true value of A increases. The solid curve (Waldo s, sartierr) illustrates the rejection rate we get using the Wald test,
defined in equation (19), with 5% nominal size (horizontal line), when the Bartlett kernel is used to estimate the long-run
covariance matrix (& la Newey-West). The dashed curve (Waldggs parzen) ShOWS the corresponding rejection rate using the
Parzen kernel, while the dotted curve (Waldg s, os) shows the corresponding rejection rate using the Quadratic Spectral
kernel. Each panel corresponds to a different local-to-unity parameter C= 0, —5, —10, —15, —20 and —50. These rejection
rates have been calculated using Monte Carlo simulations described in Section 2.1 of the main body of the study with
10,000 repetitions for a sample size of n=250, correlation coefficient between the residuals of regressions (22) and (23)
& =0 and autocorrelation coefficient ¢ =0 in the residuals of the autoregression (23).
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Figure A13

Power plots for sample size n=250 and residuals’ correlation coefficient 0 =—0.95 using different number
of lags in the Bartlett kernel for the estimation of the long-run covariance matrix

This figure shows the rejection rates for tests of the null hypothesis H, : A= 0 versus the alternative H, : A= 0 in (22)

as the true value of A increases. The solid curve (Waldg s, s=14) illustrates the rejection rate we get using the Wald test,
defined in equation (19), with 5% nominal size (horizontal line), when the lag length in the Bartlett kernel used to estimate
the long-run covariance matrix is equal to n**. The dashed curve (Waldg g5, a=1/3) Shows the corresponding rejection rate
when the lag length is equal to nY3, while the dotted curve (Waldg g5, 2=1/2) Shows the corresponding rejection rate when the
lag length is equal to n*%. Each panel corresponds to a different local-to-unity parameter C= 0, =5, =10, —15, =20 and —50.
These rejection rates have been calculated using Monte Carlo simulations described in Section 2.1 of the main body of the
study with 10,000 repetitions for a sample size of n=250, correlation coefficient between the residuals of regressions (22)
and (23) & =—0.95 and autocorrelation coefficient ¢ =0 in the residuals of the autoregression (23).
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Figure Al4

Power plots for sample size n=250 and residuals’ correlation coefficient & =—0.5 using different number
of lags in the Bartlett kernel for the estimation of the long-run covariance matrix

This figure shows the rejection rates for tests of the null hypothesis H, : A= 0 versus the alternative H, : A= 0 in (22)

as the true value of A increases. The solid curve (Waldg s, s=14) illustrates the rejection rate we get using the Wald test,
defined in equation (19), with 5% nominal size (horizontal line), when the lag length in the Bartlett kernel used to estimate
the long-run covariance matrix is equal to nY*. The dashed curve (Waldg s, a=1/3) shows the corresponding rejection rate
when the lag length is equal to nY3, while the dotted curve (Waldg g5 2=1/2) Shows the corresponding rejection rate when the
lag length is equal to n*2. Each panel corresponds to a different local-to-unity parameter C=0, =5, =10, —15, =20 and —50.
These rejection rates have been calculated using Monte Carlo simulations described in Section 2.1 of the main body of the
study with 10,000 repetitions for a sample size of n=250, correlation coefficient between the residuals of regressions (22)
and (23) & =—0.5 and autocorrelation coefficient ¢ =0 in the residuals of the autoregression (23).
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Figure Al15

Power plots for sample size n=250 and residuals’ correlation coefficient 0 =0 using different number of
lags in the Bartlett kernel for the estimation of the long-run covariance matrix

This figure shows the rejection rates for tests of the null hypothesis H, : A= 0 versus the alternative H, : A= 0 in (22)

as the true value of A increases. The solid curve (Waldg s, s=14) illustrates the rejection rate we get using the Wald test,
defined in equation (19), with 5% nominal size (horizontal line), when the lag length in the Bartlett kernel used to estimate
the long-run covariance matrix is equal to nY*. The dashed curve (Waldg s, a=1/3) shows the corresponding rejection rate
when the lag length is equal to nY3, while the dotted curve (Waldg g5 2=1/2) Shows the corresponding rejection rate when the
lag length is equal to n*2. Each panel corresponds to a different local-to-unity parameter C= 0, -5, =10, —15, =20 and —50.
These rejection rates have been calculated using Monte Carlo simulations described in Section 2.1 of the main body of the
study with 10,000 repetitions for a sample size of n=250, correlation coefficient between the residuals of regressions (22)
and (23) & =0 and autocorrelation coefficient ¢ =0 in the residuals of the autoregression (23).
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Figure A16

Rejection rates for sample size n=500 and residuals’ correlation coefficient ¢ =—0.95 using different
values of f for the construction of the instrumental variable

This figure shows the rejection rates for tests of the null hypothesis H, : A= 0 versus the alternative H, : A= 0 in (22)
using different values of g for the construction of the instrumental variable defined in (5). The solid line (Waldg s, a=0)
presents the rejection rates we get using the Wald test defined in equation (19) with 5% nominal size, when the true value
of A is zero, corresponding to the size of the test. The dotted curve (Waldyos a=0.02) presents the corresponding rejection
rates when A=0.02, the dashed curve (Waldy s a=0.04) pPresents the corresponding rejection rates when A=0.04 and the dash-
dot curve (Waldg s a=0.06) presents the corresponding rejection rates when A=0.06. Each panel corresponds to a different
local-to-unity parameter C= 0, —5, =10, —15, —20 and —50. These rejection rates have been calculated using Monte Carlo
simulations described in Section 2.1 of the main body of the study with 10,000 repetitions for a sample size of n=500,
correlation coefficient between the residuals of regressions (22) and (23) & =—0.95 and autocorrelation coefficient ¢ =0
in the residuals of the autoregression (23).
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Figure Al7
Rejection rates for sample size n=500 and residuals’ correlation coefficient 6 =—0.5 using different
values of f for the construction of the instrumental variable
This figure shows the rejection rates for tests of the null hypothesis H, : A= 0 versus the alternative H, : A= 0 in (22)
using different values of g for the construction of the instrumental variable defined in (5). The solid line (Waldg s, a=0)
presents the rejection rates we get using the Wald test defined in equation (19) with 5% nominal size, when the true value
of A is zero, corresponding to the size of the test. The dotted curve (Waldyos a=0.02) presents the corresponding rejection
rates when A=0.02, the dashed curve (Waldy s a=0.04) pPresents the corresponding rejection rates when A=0.04 and the dash-
dot curve (Waldg s a=0.06) presents the corresponding rejection rates when A=0.06. Each panel corresponds to a different
local-to-unity parameter C= 0, —5, —10, —15, —20 and —50. These rejection rates have been calculated using Monte Carlo
simulations described in Section 2.1 of the main body of the study with 10,000 repetitions for a sample size of n=500,
correlation coefficient between the residuals of regressions (22) and (23) s =—0.5 and autocorrelation coefficient ¢ =0 in
the residuals of the autoregression (23).
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Figure A18

Rejection rates for sample size n=500 and residuals’ correlation coefficient & =0 using different values of
[ for the construction of the instrumental variable

This figure shows the rejection rates for tests of the null hypothesis H, : A= 0 versus the alternative H, : A= 0 in (22)

using different values of g for the construction of the instrumental variable defined in (5). The solid line (Waldg s, a=0)
presents the rejection rates we get using the Wald test defined in equation (19) with 5% nominal size, when the true value
of A is zero, corresponding to the size of the test. The dotted curve (Waldyos a=0.02) presents the corresponding rejection
rates when A=0.02, the dashed curve (Waldy s a=0.04) pPresents the corresponding rejection rates when A=0.04 and the dash-
dot curve (Waldg s a=0.06) presents the corresponding rejection rates when A=0.06. Each panel corresponds to a different
local-to-unity parameter C= 0, —5, —10, —15, —20 and —50. These rejection rates have been calculated using Monte Carlo
simulations described in Section 2.1 of the main body of the study with 10,000 repetitions for a sample size of n=500,
correlation coefficient between the residuals of regressions (22) and (23) & =0 and autocorrelation coefficient ¢ =0 in the

residuals of the autoregression (23).
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Figure A19
Power plots using a conditionally heteroskedastic DGP for stock returns, for sample size n=1,000 and

residuals’ correlation coefficient 0 =—0.95
This figure shows the rejection rates for tests of the null hypothesis H, : A= 0 versus the alternative H, : A= 0 in (34)

of the Online Appendix as the true value of A increases, when the DGP for stock returns is conditionally heteroskedastic.
In particular, the residuals of the predictive regression for stock returns are conditionally heteroskedastic, following a
GARCH (1,1) process. The employed parameter values are derived from fitting a GARCH (1,1) to the residuals estimated
from regressing S&P 500 value-weighted log excess returns on dividend yield, using monthly data for the period
1927-2012. The solid curve (Waldggs) illustrates the rejection rate we get using the Wald test, defined in equation (19),
with 5% nominal size (horizontal line). The dashed curve (CYQ,s) illustrates the rejection rate using the 95% confidence
interval of the Campbell and Yogo (2006) Q-test. Each panel corresponds to a different local-to-unity parameter C= 0, —5,
—10, —15, —20 and —50. These rejection rates have been calculated using Monte Carlo simulations described in Section 2.7
of the Online Appendix with 10,000 repetitions for a sample size of n=1,000, correlation coefficient between the residuals
& =—0.95 and no autocorrelation (¢ =0) in the residuals of the autoregression.
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Figure A20
Power plots using a conditionally heteroskedastic DGP for stock returns, for sample size n=1,000 and

residuals’ correlation coefficient 0 =—0.5
This figure shows the rejection rates for tests of the null hypothesis H, : A= 0 versus the alternative H, : A= 0 in (34)

of the Online Appendix as the true value of A increases, when the DGP for stock returns is conditionally heteroskedastic.
In particular, the residuals of the predictive regression for stock returns are conditionally heteroskedastic, following a
GARCH (1,1) process. The employed parameter values are derived from fitting a GARCH (1,1) process to the residuals
estimated from regressing S&P 500 value-weighted log excess returns on dividend yield, using monthly data for the period
1927-2012. The solid curve (Waldggs) illustrates the rejection rate we get using the Wald test, defined in equation (19),
with 5% nominal size (horizontal line). The dashed curve (CYQ,s) illustrates the rejection rate using the 95% confidence
interval of the Campbell and Yogo (2006) Q-test. Each panel corresponds to a different local-to-unity parameter C= 0, —5,
—10, —15, —20 and —50. These rejection rates have been calculated using Monte Carlo simulations described in Section 2.7
of the Online Appendix with 10,000 repetitions for a sample size of n=1,000, correlation coefficient between the residuals
& =—0.5 and no autocorrelation (¢ =0) in the residuals of the autoregression.
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Figure A21
Power plots using a conditionally heteroskedastic DGP for stock returns, for sample size n=1,000 and

residuals’ correlation coefficient 0 =0
This figure shows the rejection rates for tests of the null hypothesis H, : A= 0 versus the alternative H, : A= 0 in (34)

of the Online Appendix as the true value of A increases, when the DGP for stock returns is conditionally heteroskedastic.
In particular, the residuals of the predictive regression for stock returns are conditionally heteroskedastic, following a
GARCH (1,1) process. The employed parameter values are derived from fitting a GARCH (1,1) process to the residuals
estimated from regressing S&P 500 value-weighted log excess returns on dividend yield, using monthly data for the period
1927-2012. The solid curve (Waldggs) illustrates the rejection rate we get using the Wald test, defined in equation (19),
with 5% nominal size (horizontal line). The dashed curve (CYQ,s) illustrates the rejection rate using the 95% confidence
interval of the Campbell and Yogo (2006) Q-test. Each panel corresponds to a different local-to-unity parameter C= 0, —5,
—10, —15, —20 and —50. These rejection rates have been calculated using Monte Carlo simulations described in Section 2.7
of the Online Appendix with 10,000 repetitions for a sample size of n=1,000, correlation coefficient between the residuals

& =0 and no autocorrelation (¢ =0) in the residuals of the autoregression.
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Figure A22

Power plots for long—horizon Wald test, sample size n=1,000 and residuals’ correlation coefficient 6 =—0.95
This figure shows the rejection rates, derived from K-horizon univariate predictive regressions as in equation (30), for tests of
the null hypothesis H, : A=0 in the DGP (22), as the true value of A increases. The solid curve (Waldy s, k=12) illustrates the
rejection rate we get using the long-horizon Wald test, defined in equation (34), with 5% nominal size (horizontal line), when
the predictive horizon is K=12. The dotted curve (Waldy s, k=36) illustrates the corresponding rejection rate when the horizon is
K=36. The dashed curve (Waldgs, k=s0) illustrates the corresponding rejection rate when the horizon is K=60. Each panel
corresponds to a different local-to-unity parameter C= 0, —5, —10, —15, —20 and —50. These rejection rates have been
calculated using Monte Carlo simulations described in Section 5.2 with 10,000 repetitions for a sample size of n=1,000,

correlation coefficient between the residuals of regressions (22) and (23) 6 =—0.95 and no autocorrelation in the residuals of
the autoregressive equation, i.e., ¢ =0 in (24).
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Figure A23

Power plots for long—horizon Wald test, sample size n=1,000 and residuals’ correlation coefficient 6 =—0.5
This figure shows the rejection rates, derived from K-horizon univariate predictive regressions as in equation (30), for tests of
the null hypothesis H, : A=0 in the DGP (22), as the true value of A increases. The solid curve (Waldy s, k=12) illustrates the
rejection rate we get using the long-horizon Wald test, defined in equation (34), with 5% nominal size (horizontal line), when
the predictive horizon is K=12. The dotted curve (Waldy s, k=36) illustrates the corresponding rejection rate when the horizon is
K=36. The dashed curve (Waldgs, k=s0) illustrates the corresponding rejection rate when the horizon is K=60. Each panel
corresponds to a different local-to-unity parameter C= 0, —5, —10, —15, —20 and —50. These rejection rates have been
calculated using Monte Carlo simulations described in Section 5.2 with 10,000 repetitions for a sample size of n=1,000,
correlation coefficient between the residuals of regressions (22) and (23) 6 =—0.5 and no autocorrelation in the residuals of
the autoregressive equation, i.e., ¢ =0 in (24).
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Figure A24

Power plots for long—horizon Wald test, sample size n=1,000 and residuals’ correlation coefficient § =0

This figure shows the rejection rates, derived from K-horizon univariate predictive regressions as in equation (30), for tests of
the null hypothesis H, : A=0 in the DGP (22), as the true value of A increases. The solid curve (Waldy s, k=12) illustrates the
rejection rate we get using the long-horizon Wald test, defined in equation (34), with 5% nominal size (horizontal line), when
the predictive horizon is K=12. The dotted curve (Waldy s, k=36) illustrates the corresponding rejection rate when the horizon is
K=36. The dashed curve (Waldgs, k=s0) illustrates the corresponding rejection rate when the horizon is K=60. Each panel
corresponds to a different local-to-unity parameter C= 0, —5, —10, —15, —20 and —50. These rejection rates have been
calculated using Monte Carlo simulations described in Section 5.2 with 10,000 repetitions for a sample size of n=1,000,

correlation coefficient between the residuals of regressions (22) and (23) ¢ =0 and no autocorrelation in the residuals of the
autoregressive equation, i.e., ¢ =0 in (24).
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Figure A25

Power plots for long—horizon Wald test, sample size n=500 and residuals’ correlation coefficient & =—0.95
This figure shows the rejection rates, derived from K-horizon univariate predictive regressions as in equation (30), for tests of
the null hypothesis H, : A=0 in the DGP (22), as the true value of A increases. The solid curve (Waldo s, k=4) illustrates the

rejection rate we get using the long-horizon Wald test, defined in equation (34), with 5% nominal size (horizontal line), when
the predictive horizon is K=4. The dotted curve (Waldy s, k=12) illustrates the corresponding rejection rate when the horizon is
K=12. The dashed curve (Waldy s k=20) illustrates the corresponding rejection rate when the horizon is K=20. Each panel
corresponds to a different local-to-unity parameter C= 0, —5, —10, —15, —20 and —50. These rejection rates have been
calculated using Monte Carlo simulations described in Section 5.2 of the main body of the study with 10,000 repetitions for a
sample size of n=500, correlation coefficient between the residuals of regressions (22) and (23) in the main body of the study

0 =—0.95 and no autocorrelation in the residuals of the autoregressive equation, i.e., ¢ =0 in (24).
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Figure A26

Power plots for long—horizon Wald test, sample size n=500 and residuals’ correlation coefficient & =—0.5
This figure shows the rejection rates, derived from K-horizon univariate predictive regressions as in equation (30), for tests of
the null hypothesis H, : A=0 in the DGP (22), as the true value of A increases. The solid curve (Waldo s, k=4) illustrates the

rejection rate we get using the long-horizon Wald test, defined in equation (34), with 5% nominal size (horizontal line), when
the predictive horizon is K=4. The dotted curve (Waldy s, k=12) illustrates the corresponding rejection rate when the horizon is
K=12. The dashed curve (Waldgs, k=20) illustrates the corresponding rejection rate when the horizon is K=20. Each panel
corresponds to a different local-to-unity parameter C= 0, —5, —10, —15, —20 and —50. These rejection rates have been
calculated using Monte Carlo simulations described in Section 5.2 of the main body of the study with 10,000 repetitions for a
sample size of n=500, correlation coefficient between the residuals of regressions (22) and (23) in the main body of the study
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Figure A27

Power plots for long—horizon Wald test, sample size n=500 and residuals’ correlation coefficient & =0
This figure shows the rejection rates, derived from K-horizon univariate predictive regressions as in equation (30), for tests of
the null hypothesis H, : A=0 in the DGP (22), as the true value of A increases. The solid curve (Waldo s, k=4) illustrates the

rejection rate we get using the long-horizon Wald test, defined in equation (34), with 5% nominal size (horizontal line), when
the predictive horizon is K=4. The dotted curve (Waldy s, k=12) illustrates the corresponding rejection rate when the horizon is
K=12. The dashed curve (Waldgs, k=20) illustrates the corresponding rejection rate when the horizon is K=20. Each panel
corresponds to a different local-to-unity parameter C= 0, —5, —10, —15, —20 and —50. These rejection rates have been
calculated using Monte Carlo simulations described in Section 5.2 of the main body of the study with 10,000 repetitions for a
sample size of n=500, correlation coefficient between the residuals of regressions (22) and (23) in the main body of the study

0 =0 and no autocorrelation in the residuals of the autoregressive equation, i.e., ¢ =0 in (24).
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