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Robust Econometric Inference for Stock Return Predictability

Abstract

This study examines stock return predictability via lagged �nancial variables with un-

known stochastic properties. We conduct a battery of predictability tests for US stock returns

during the 1927�2012 period, proposing a novel testing procedure which: i) robusti�es infer-

ence to the degree of persistence of the employed regressors, ii) accommodates testing the

joint predictive ability of �nancial variables in multiple regression, iii) is easy to implement

as it is based on a linear estimation procedure and iv) can be also used for long-horizon

predictability tests. We provide some evidence in favor of short-horizon predictability in the

full sample period. Nevertheless, this evidence almost entirely disappears in the post�1952

period. Moreover, predictability becomes weaker, not stronger, as the predictive horizon

increases.

Keywords: Stock returns; Predictability; Persistent regressors; Robust inference.
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A fundamental issue in �nance is whether future stock returns are predictable using publicly

available information (see Fama, 1970). The seminal studies of Keim and Stambaugh (1986),

Fama and French (1988) and Campbell and Shiller (1988) empirically demonstrated that cer-

tain �nancial variables have signi�cant predictive ability over future stock returns. Fama (1991)

interpreted these �ndings as evidence of time-varying risk premia rather than evidence against

market e¢ ciency. Despite the signi�cant volume of subsequent research, the predictability de-

bate still remains unsettled (see Ang and Bekaert, 2007, for an insightful discussion). On the

one hand, Lettau and Ludvigson (2001, p. 842) state that �it is now widely accepted that

excess returns are predictable by variables such as dividend-price ratios, earning-price ratios,

dividend-earnings ratios and an assortment of other �nancial indicators�. But many remain

sceptical, claiming that the �profession has yet to �nd some variable that has meaningful and

robust empirical equity premium forecasting power both in-sample and out-of-sample�(Welch

and Goyal, 2008, p. 1505).

Empirical support of arguments in favor of or against predictability crucially relies on in-

ference from predictive regressions, hence the size and power of the employed hypothesis tests

assume fundamental importance. A series of recent studies, reviewed in Campbell and Yogo

(2006) (hereafter CY), recognize that the most common problem undermining con�dence in the

reliability of predictability tests is the uncertainty about the (unobservable) time series proper-

ties of the predictor variables and, in particular, their degree of persistence. Regardless of one�s

prior beliefs on their order of integration, it is well documented that most of the variables used

in predictive regressions are highly persistent with autoregressive roots extremely close to unity

(see CY, and Welch and Goyal, 2008). This empirical fact casts doubt on the validity of standard

t-tests based on least squares regressions (see Cavanagh, Elliott and Stock, 1995, and Torous,

Valkanov and Yan, 2004). As Stambaugh (1999) has convincingly shown, this problem is exacer-

bated if, additionally, the innovations of the predictor are highly correlated with the innovations

of the returns, i.e., when the predictive regressor is endogenous. Endogeneity is a typical feature

of commonly used predictors, such as price-scaled ratios. Since regression estimators and tests

have fundamentally di¤erent properties in the presence of persistent and endogenous predictors,

con�dence in the reliability of predictability tests is undermined, as the quality of inference is

conditional upon correct speci�cation of the predictors�time series properties.
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Acknowledging the uncertainty regarding the degree of predictive variables�persistence, a

strand of the literature suggests modelling these variables as local-to-unity processes (see inter

alia Lanne, 2002, Valkanov, 2003, Torous et al., 2004, CY, Jansson and Moreira, 2006, and

Hjalmarsson, 2011). These processes assume the form of a �rst-order autoregression with root

� = 1 + c=n, approaching a random walk as the sample size n increases to in�nity. While pro-

viding �exibility in modelling, the use of explanatory variables that exhibit persistence without

necessarily being random walks in �nite samples raises serious technical complications. Since

standard cointegration methods cannot accommodate the presence of local-to-unity roots in pre-

dictive regressions, Cavanagh et al. (1995), Torous et al. (2004), CY, and Hjalmarsson (2011)

have employed methods based on inverting the non-pivotal limit distribution of the t-statistic

and constructing Bonferroni-type con�dence intervals for the nuisance parameter c. This is the

current state of the art methodology for testing the predictability of stock returns with highly

persistent regressors.

Practical implementation of the above methodology presents two main drawbacks. First,

the method is invalid if the regressor contains stationary or near stationary components; the

validity of the method requires each predictor to be at least as persistent as a local-to-unity

process, a restrictive assumption that cannot be empirically tested. Second, due to the problems

associated with the construction of multidimensional con�dence intervals for c, the methodology

is restricted to the case of a scalar regressor, i.e., a single predictive variable. This imposes a

severe restriction, since the joint predictability by combinations of �nancial variables cannot

be tested. The above framework can only accommodate testing the predictive power of each

�nancial variable in isolation, which may result in loss of information through omitted variables.

These limitations have also been indicated by Ang and Bekaert (2007, footnote 3). We build

upon this strand of the literature by proposing a methodology that successfully overcomes these

limitations.

In recent work, Phillips and Magdalinos (2009) provide a framework of limit theory that

can be used to validate inference in models with regressors exhibiting very general time series

characteristics. Endogeneity is successfully removed by means of a data �ltering procedure

called IVX estimation. The key idea behind the method is the explicit control of the degree

of persistence of data-�ltered IVX instruments, restricted within the class of near stationary
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processes. In this study, we prove that in the context of multivariate predictive regressions, the

IVX approach yields standard chi-squared asymptotic inference for testing general restrictions

on predictive variables with degree of persistence covering the entire range from stationarity

of stable autoregressions to pure nonstationarity of unit root processes. The robustness of the

IVX approach should alleviate practical concerns about the quality of inference under possible

misspeci�cation of the time series properties of the predictive regressors. The dimensionality of

the system of predictive regressions is of considerable practical importance too, since the IVX

methodology enables the assessment of the joint predictive power of various combinations of

regressors.1 In summary, our study introduces and implements a testing procedure that resolves

two important outstanding issues in the predictability literature: i) robustness with respect to

the time series properties of the predictors and ii) joint testing in systems of predictive equations.

Furthermore, we show that this testing procedure is also applicable to long-horizon predictive

regressions and we develop the relevant statistic.

We implement the proposed methodology by conducting a battery of short- and long-horizon

predictability tests for US stock returns during the 1927�2012 period, using a set of commonly

employed variables. We focus on in-sample predictability tests since the proposed methodology

aims to robustify in-sample inference with respect to regressors�unknown time series properties.

In univariate tests, we �nd signi�cant predictive ability with respect to 1-period ahead excess

market returns for the earnings-price and book-to-market value ratios as well as net equity

expansion. However, this evidence almost entirely disappears in the post�1952 period. Only the

consumption-wealth ratio is found to be strongly signi�cant in this subperiod. Our multivariate

tests show that the combination of the earnings-price ratio and T-bill rate is highly signi�cant

and robust to the choice of data frequency and examined period. Finally, with respect to long-

horizon tests, we �nd that, if anything, predictability generally becomes weaker, not stronger,

as the horizon increases. Only the consumption-wealth ratio remains strongly signi�cant for all

horizons examined.

The rest of this study is organized as follows. Section 1 presents the IVX methodology

1 It should be noted that the iterative procedure of Amihud, Hurvich and Wang (2009) also accommodates
multiple predictors under the restriction that these are stationary. Moreover, the recent contribution of Kelly and
Pruitt (2013) also utilizes a multivariate system of predictive regressions. However, their focus is on extracting
information regarding aggregate expected returns and dividend growth from the cross-section of price-dividend
ratios using the present value relationship that has been employed for predictability tests inter alia by Lettau
and Ludvigson (2005), Cochrane (2008), Lettau and van Nieuwerburgh (2008) and van Binsbergen and Koijen
(2010).
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in systems of predictive regressions, while a comprehensive Monte Carlo study for the �nite-

sample properties of the derived test statistic is provided in Section 2. Section 3 presents the

dataset used in the empirical analysis. In Section 4 we carry out short-horizon predictability

tests for US stock returns, while in Section 5 we generalize the testing procedure to long-horizon

predictive regressions, we examine the �nite-sample properties of the corresponding statistic and

we present the results from long-horizon predictability tests. Section 6 contains some concluding

remarks. The Appendix outlines the large-sample distributional properties of IVX estimation

and inference. The proofs are collected in the Online Appendix, which also contains a series of

further results.

1. Robust inference for predictive regressions

This section develops an econometric methodology for testing stock return predictability that is

robust to uncertainty over the stochastic properties of the �nancial variables used as potential

predictors. Accommodating this uncertainty requires a modelling framework that encompasses

all empirically relevant classes of autoregressive data generating mechanisms. To this end, we

consider the following multivariate system of predictive regressions with regressors containing

explanatory variables with arbitrary degree of persistence:

yt = �+Axt�1 + "t; (1)

xt = Rnxt�1 + ut; (2)

where A is an m� r coe¢ cient matrix and

Rn = Ir +
C

n�
for some � � 0; (3)

and some matrix C = diag(c1; :::; cr), where n denotes the sample size. The vector of predictive

variables xt in (2) exhibits a degree of persistence induced by the autoregressive matrix in (3)

that belongs to one of the following persistence classes:

P(i) Integrated regressors, if C = 0 or � > 1 in (3).

P(ii) Local -to-unity regressors, if C 6= 0 and � = 1 in (3).
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P(iii) Near stationary regressors, if ci < 0 for all i and � 2 (0; 1) in (3).

P(iv) Stationary regressors, if ci < 0 for all i and � = 0 in (3).

The classes P(i)-P(iv) include predictors with very general time series characteristics varying

from purely stationary to purely non-stationary processes and accommodating all intermediate

persistence regimes. The predictive regression system may be initialized at some x0 that could

be any �xed constant vector or a random process satisfying kx0 (n)k = op
�
n1=2

�
when � � 1 or

� = 0 and kx0 (n)k = op
�
n�=2

�
when � 2 (0; 1).

Estimators and test statistics for conducting inference on the matrix A have very di¤erent

properties according to the classi�cation of the predictor process in (2) into one of the above

persistence classes. Standard tests are asymptotically valid only within each class P(i)�P(iv) and

misspeci�cation of the degree of predictor persistence may lead to severe size distortions, partic-

ularly in the presence of endogeneity, i.e., correlation between the innovations "t and ut of the

predictive regression system (1)�(2) (see Elliott, 1998).2 CY have partly addressed the problem

for univariate predictive regressions (m = r = 1 in (1)�(2)) by inverting the limit distribution

of the t-statistic under a local-to-unity regime P(ii) and using the Bonferroni inequality to con-

struct con�dence intervals which are asymptotically valid under P(i) or P(ii). However, the CY

method loses its asymptotic validity for predictors that lie closer to the stationary region than

local-to-unity time series. Such predictors can be modelled either as local-to-unity processes

with ci in (3) being large in absolute value (Phillips, 1987) or, more formally, as belonging to

the class P(iii) of near stationary processes established by Phillips and Magdalinos (2007) and

extended to multivariate systems of regression equations by Magdalinos and Phillips (2009).

We provide valid inference on A when there is no a priori knowledge of whether xt belongs

to class P(i), P(ii), P(iii) or P(iv). Our methodology for achieving robust inference is based on

the IVX instrumentation procedure proposed by Phillips and Magdalinos (2009). The intuition

2 In general, long-run endogeneity cannot be removed by standard cointegration methods such as the fully
modi�ed least squares estimation of Phillips and Hansen (1990) or the approaches of Saikkonen (1991) and Stock
and Watson (1993) that apply when the regressor is a pure random walk (c = 0). As pointed out by Elliott
(1998), such endogeneity corrected estimators lose their asymptotic mixed normality property under a local-to-
unity regime and the associated hypothesis tests have a non-standard limit distribution, with the non-centrality
parameter depending on the coe¢ cient c of the local-to-unity root. Since c cannot be consistently estimated,
the endogeneity cannot be removed, leading to asymptotically invalid predictability tests. Analogous problems
arise when predictors exhibit a lower degree of persistence relative to local-to-unity processes, as is the case
with the class of �near stationary�processes introduced by Phillips and Magdalinos (2007) as well as stationary
autoregressive processes.
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behind this procedure is to construct an instrumental variable whose degree of persistence we

explicitly control. In this way, the inference problems arising due to the uncertainty regarding

the persistence of the original regressor are avoided. Using the constructed instrument, one then

performs a standard instrumental variable estimation. It turns out that the derived estimator

follows asymptotically a mixed normal distribution, and hence the corresponding Wald statis-

tic follows asymptotically a chi-squared distribution under the null, considerably simplifying

inference.

To �x ideas, we construct near stationary instruments belonging to the class P(iii) by di¤er-

encing the regressor xt and constructing a new process according to an arti�cial autoregressive

matrix with speci�ed persistence degree. Despite the fact that the di¤erence:

�xt = ut +
C

n�
xt�1

is not an innovation unless the regressor belongs to the class P(i) of integrated processes, it

behaves asymptotically as an innovation after linear �ltering by a matrix consisting of near

stationary roots of the type P(iii). Choosing an arti�cial matrix:

Rnz = Ir +
Cz
n�
; � 2 (0; 1) ; Cz < 0; (4)

IVX instruments ~zt are constructed as a �rst-order autoregressive process with autoregressive

matrix Rnz and innovations �xt:

~zt = Rnz~zt�1 +�xt (5)

initialized at ~z0 = 0. In particular, we use Cz = �Ir and � = 0:95.

This choice of � follows from the size and power properties of the subsequently derived

Wald test.3 Extensive Monte Carlo simulations presented in the Online Appendix show that

the �nite-sample size of the test is very close to the nominal 5% level regardless of the value of

�. This holds true for all cases of regressor persistence considered. With respect to the power

of the test, we �nd that it increases monotonically as � increases for all cases considered. This

property is also suggested by the n(1+�)=2 rate of convergence of the IVX estimator in Theorem

3To be precise, we follow the convention in prior literature and use the term "size" throughout this study to
indicate the "probability of a Type I error" for the various test statistics considered.
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A(i) provided in the Appendix. A closer inspection of the reported power plots suggests that

starting from low or moderate values of �, there are considerable power gains when we further

increase � towards its upper boundary, especially when the true value of A is closer to the null.

Given this evidence, we con�dently argue that high values of � yield the highest level of power

for the Wald test and, at the same time, yield size very close to the nominal 5% level. Therefore,

in the empirical implementation of our testing procedure, we use � = 0:95, which is among the

highest values that � can take. Moreover, we strongly advise against using values of � less than

0:9, as they may lead to unnecessary loss of power for the test statistic.4

As it is standard in the literature, we assume that the innovations "t of the predictive

equation (1) are uncorrelated, while allowing for correlation in the innovations of the predictor

sequence ut. The dependence structure of the innovations is formally presented below: part

(i) provides assumptions under conditional homoskedasticity; part (ii) accommodates a general

form of conditional heteroskedasticity under additional assumptions.

Assumption INNOV. Let �t = ("0t; e
0
t)
0, with "t as in (1), denote an Rm+r-valued martingale

di¤erence sequence with respect to the natural �ltration Ft = � (�t; �t�1; :::) satisfying

EFt�1
�
�t�

0
t

�
= �t a:s: and sup

t2Z
E k�tk2s <1 (6)

for some s > 1, where �t is a positive de�nite matrix. Let ut in (2) be a stationary linear

process

ut =
1X
j=0

Cjet�j (7)

where (Cj)j�0 a sequence of constant matrices such that
P1
j=0Cj has full rank and C0 = Ir.

We maintain one of the following assumptions:

(i) �t = �� for all t and
P1
j=0 kCjk <1:

(ii) The process (�t)t2Z is strictly stationary ergodic satisfying (6) with s = 2 and

lim
m!1



Cov �vec ��m�0m� ; vec ��0�00��

 = 0: (8)

4We would like to thank an anonymous referee for suggesting this clari�cation.
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The sequence (Cj)j�0 in (7) satis�es

1X
j=0

j kCjk <1: (9)

The sequence ("t)t2Z admits the following vec-GARCH (p; q) representation:

"t = H
1=2
t �t; vec (Ht) = '+

qX
i=1

Aivech
�
"t�i"

0
t�i
�
+

pX
k=1

Bkvech (Ht�k) (10)

where (�t)t2Z is an i.i.d. (0; Im) sequence, ' is a constant vector, Ai; Bk are sym-

metric positive semide�nite matrices for all i; k, and the spectral radius of the matrix

� =
Pq
i=1Ai +

Pp
k=1Bk satis�es � (�) < 1.

Assumption INNOV(i) imposes conditional homoskedasticity on the martingale di¤erence

sequence �t and short-memory on the linear process (7). Assumption INNOV(ii) accounts for

conditionally heteroskedastic �t with �nite fourth-order moments of a very general form: the

vec-GARCH process in (10) is the most general multivariate GARCH speci�cation (see Chapter

11 of Francq and Zakoian (2010)).5

Following standard notational convention, we de�ne the short-run and long-run covariance

matrices associated with the innovations "t and ut in (1), (2) as follows:

�"" = E
�
"t"

0
t

�
; �"u = E

�
"tu

0
t

�
; �uu = E

�
utu

0
t

�
(11)


uu =

1X
h=�1

E
�
utu

0
t�h
�
; 
"u = �"u + �

0
u"; �u" =

1X
h=1

E
�
ut"

0
t�h
�
: (12)

Note that 
"u is only a one-sided long-run covariance matrix because "t is an uncorrelated

sequence by Assumption INNOV. For the same reason, the long-run covariance of the "t sequence

is equal to the short-run covariance �"". Denoting by "̂t the OLS residuals from (1) and by ût
5The positive semide�nite condition on the matrices Ai; Bk of (10) and the condition on the spectral radius

of their sum are part of the standard Boussama (2006) stationarity conditions for the vec-GARCH process; see
Theorem 11.5 of Francq and Zakoian (2010). Condition (8) is a mild weak dependence requirement on the process
vec(�t�0t): it is satis�ed if �t is given a vec-GARCH speci�cation analogous to "t, but the results in this paper do
not require a parametric speci�cation of the conditional variance structure of the et process. A general discussion
of the rate of decay of the autocovariance function in (8) in the case of univariate conditionally heteroskedastic
time series admiting a stationary ARCH(1) representation is included in Giraitis, Kokoszka and Leipus (2000).
The summability condition (9) is standard in the literature on short-memory linear processes (see Phillips and
Solo, 1992).
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the OLS residuals from (2), the covariance matrices in (11) can be estimated in a standard way:

�̂"" =
1

n

nX
t=1

"̂t"̂
0
t; �̂"u =

1

n

nX
t=1

"̂tû
0
t; �̂uu =

1

n

nX
t=1

ûtû
0
t: (13)

Accommodating autocorrelation in ut that takes the general form (7) requires non-parametric

estimation of the long-run covariance matrices in (12): letting Mn be a bandwidth parameter

satisfying Mn ! 1 and Mn=
p
n ! 0 as n ! 1, we employ the usual Newey-West type

estimators

�̂uu =
1

n

MnX
h=1

�
1� h

Mn + 1

� nX
t=h+1

ûtû
0
t�h; 
̂uu = �̂uu + �̂uu + �̂

0
uu (14)

�̂u" =
1

n

MnX
h=1

�
1� h

Mn + 1

� nX
t=h+1

ût"̂
0
t�h; 
̂"u = �̂"u + �̂

0
u": (15)

Under the full generality of Assumption INNOV, we provide robust inference for the matrix of

coe¢ cients A that is invariant to the predictive variables belonging to classes P(i)-P(iv).

Allowing for the presence of an intercept in the predictive equation (1) requires further

development of IVX estimation and testing theory. The �rst step is to use a standard demeaning

transformation of (1) that yields exact invariance of estimation of A to the presence of an

intercept. We denote sample averages of variates in the system (1)�(2) by �yn = n�1
Pn
t=1 yt,

�xn�1 = n�1
Pn
t=1 xt�1, �"n = n�1

Pn
t=1 "t, the demeaned variates by Yt = yt � �yn; Xt = xt �

�xn�1 and Et = "t � �"n, the resulting (demeaned) regression matrices by Y = (Y 01 ; :::; Y
0
n)
0 and

X =
�
X 0
0; :::; X

0
n�1
�0, and the (undemeaned) instrument matrix by ~Z = �~z00; :::; ~z0n�1�0 : We may

obtain invariance to the presence of the intercept � in the predictive equation by subtracting

�yn = �+A�xn�1 + �"n from (1) and obtaining the transformed predictive equation

Yt = AXt�1 + Et: (16)

We now proceed with IVX estimation of A from the predictive regression system (16), by con-

sidering a two-stage least squares estimator based on the near stationary instruments in (5):

~AIV X = Y
0 ~Z
�
X 0 ~Z

��1
=

nX
t=1

(yt � �yn) ~z0t�1

24 nX
j=1

(xj � �xn�1) ~z0j�1

35�1 : (17)
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Note that the estimator does not involve a demeaned version of the matrix of instruments, as

the IVX estimator in (17) is invariant to demeaning ~zt�1 by �zn�1.

The asymptotic behavior of the normalized and centred IVX estimator in (17) is summarized

by Theorem A in the Appendix. It turns out that the varying persistence levels of the predictor

process in (2) and the e¤ect of estimating an intercept in the predictive model (1) become

manifest only in the limit distribution of the normalized signal matrix X 0 ~Z. After appropriate

centering and normalization, the Y 0 ~Z component of the IVX estimator converges in distribution

to a Gaussian variate that is independent of the (possibly) random limit in distribution of the

signal matrix. As a result, the IVX estimator in (17) follows a mixed Gaussian limit distribution

irrespective of the degree of persistence of the predictor variable in (2).

The asymptotic mixed normality property of the IVX procedure implies that linear restric-

tions on the coe¢ cients A generated by the system of predictive equations (1) can be tested by

a standard Wald test based on the IVX estimator for all persistence scenarios conforming to the

classes P(i)-P(iv). In particular, we consider a set of linear restrictions

H0 : Hvec (A) = h; (18)

where H is a known q � mr matrix with rank q and h is a known vector. We propose the

following IVX-Wald statistic for testing H0 in (18):

WIV X =
�
Hvec ~AIV X � h

�0
Q�1H

�
Hvec ~AIV X � h

�
(19)

where ~AIV X is the IVX estimator in (17),

QH = H

��
~Z 0X

��1

 Im

�
M
��
X 0 ~Z

��1

 Im

�
H 0

M = ~Z 0 ~Z 
 �̂"" � n�zn�1�z0n�1 
 
̂FM (20)


̂FM = �̂"" � 
̂"u
̂�1uu 
̂0"u (21)

and the matrices �̂"", 
̂"u and 
̂uu are de�ned in (13), (14) and (15).
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Theorem 1. Consider the model (1)�(3) under Assumption INNOV with instruments ~zt de-

�ned by (4) and (5). Then, the Wald statistic in (19) for testing (18) satis�es

WIV X ) �2 (q) as n!1

under H0, for the following classes of predictor processes xt in (2):

(i) P(i)-P(iv) under Assumption INNOV(i)

(ii) P(i)-P(iii) under Assumption INNOV(ii).

The proof of Theorem 1 can be found in the Online Appendix. Theorem 1 establishes the

robustness of the IVX-Wald test in (19) to the persistence properties of the predictor process

in (2). It shows that the IVX methodology provides a unifying framework of inference in

predictive regressions that encompasses the whole range of empirically relevant autoregressive

data generating mechanisms, from stationary processes to purely nonstationary random walks.

The only class of predictor variables not covered by Theorem 1 is that of purely stationary

autoregressions P(iv) with conditionally heteroskedastic innovations. This is by no means sur-

prising since, in the above case, the IVX-Wald test statistic is asymptotically equivalent to a

standard Wald statistic of the form:

Wn =
�
HvecÂOLS � h

�0 h
H
n�
X 0X

��1 
 �̂""oH 0
i�1 �

HvecÂOLS � h
�

with ÂOLS the usual OLS estimator. It is well known that, even with a priori knowledge

that xt is a stationary process, Wn will not have a �2 (q) limit distribution when the inno-

vation sequence "t in (1) is conditionally heteroskedastic because the asymptotic variance of

n�1=2
Pn
t=1 (xt�1 
 "t) is given by� = E

�
xt�1x0t�1 
 "t"0t

�
and does not factorise to E

�
xt�1x0t�1

�



�"" as in the case when "t are conditionally homoskedastic (see equation (35) in Theorem A

below). Consequently, the matrix (X 0X)�1 
 �̂"" is no longer a consistent estimator of the

asymptotic variance of vec
�
ÂOLS

�
and Wn will fail to be asymptotically �2 (q).

This failure is a characteristic of least squares regression rather than IVX methodology. It

can be recti�ed by introducing a White (1980)-type of correction in the Wald statistic. In

particular, using �̂n = n�1
Pn
t=1

�
~zt�1~z0t�1 
 "̂t"̂0t

�
as estimator for �, with "̂t being the OLS
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residuals from (1), and replacing the matrix M in (20) by ~M = n�̂n � n�zn�1�z0n�1 
 
̂FM makes

the IVX-Wald statistic in (19) heteroskedasticity-robust even in the P(iv) case.

The robustness of the IVX-Wald statistic to conditional heteroskedasticity for the persistence

classes P(i)-P(iii) is a novel result of considerable interest: it depends on establishing the invari-

ance, under Assumptions INNOV(i) and INNOV(ii), of the limit distribution in the central limit

theorem for n�(1+�)=2
Pn
t=1 (xt�1 
 "t) for � 2 (0; 1); see Lemma B4 of the Online Appendix.

Since the IVX instrument ~zt behaves asymptotically as a near stationary process (zt if � < �

and xt if � > �), Lemma B4 ensures that vec
�
~AIV X

�
will have the same asymptotic variance

under Assumptions INNOV(i) and INNOV(ii) for all � > 0. The methods developed in Lemma

B4 can be used in a wider context to show that any amount of persistence (even of arbitrarily

small order) in the regressor xt alleviates asymptotically the e¤ect of conditional heteroskedas-

ticity and results to t and Wald statistics with standard limit distributions. This phenomenon

becomes manifest in long-horizon predictive regressions when the horizon parameter tends to

in�nity with the sample size; see Theorem 2(ii) in Section 5 below.

Removing the �nite-sample distortion to the mixed normal limit distribution of the IVX

estimator caused by the estimation of the intercept is another subtle issue. The component QH

in the quadratic form of the Wald statistic in (19) contains a �nite-sample correction in the form

of a weighted demeaning of the dominating term ~Z 0 ~Z 
 �̂"" of M in (20) by n�zn�1�z0n�1 
 
̂FM .

Despite not contributing to the �rst-order limit theory for WIV X , this correction removes the

�nite-sample e¤ects of estimating an intercept in (1). As discussed in Remark A(b) of the

Appendix, these e¤ects are more prominent for highly persistent regressors that are strongly

correlated with the predictive model�s innovations "t. Weighting the demeaning in (20) by

the long-run covariance matrix 
̂FM (that appears in the Phillips and Hansen (1990) FM-

endogeneity correction for integrated systems) controls the e¤ect of correlation between "t and

ut on the remainder term of the Gaussian �rst-order approximation (see equation (36) in the

Appendix) by the degree of demeaning of the instrument moment matrix ~Z 0 ~Z. To obtain better

intuition on the nature of the correction in (20), assume for simplicity that m = r = 1; then

M =

"
nX
t=1

~z2t�1 � n�z2n�1
�
1� �̂2"u

�#
�̂""
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where �̂"u = 
̂"u=
p
�̂""
̂uu is an estimator of the long-run correlation coe¢ cient between "t and

ut. Therefore, the correction in (20) applies a weighting of the demeaning of the ~Z 0 ~Z matrix

according to the magnitude of the absolute value of the long-run correlation coe¢ cient �"u, with

higher values of �"u associated with reduced degree of demeaning.

2. Finite-sample properties

2.1 Univariate case

This Section analyzes the �nite-sample performance of the IVX-Wald statistic in (19) by means

of an extensive Monte Carlo study and compares it to the performance of the Q-statistic of CY

and the ��0:05 statistic of Jansson and Moreira (2006, henceforth JM). We run two-sided tests

with nominal size 5% for all three statistics under the null hypothesis that the slope coe¢ cient

in the predictive regression is zero, i.e., H0 : A = 0.

We use the following data generating process (DGP) for the univariate case, where yt and

xt are scalars. For t 2 f1; :::; ng, the innovation sequences "t � NID(0; 1) and et � NID(0; 1)

generate the model:

yt = �+Axt�1 + "t (22)

xt = Rnxt�1 + ut; Rn = 1 + C=n (23)

ut = �ut�1 + et (24)

We denote by � = E ("tut) the contemporaneous correlation coe¢ cient between "t and ut: Simu-

lation results using 10,000 repetitions are presented for values of C 2 f0;�5;�10;�15;�20;�50g ;

� 2 f�0:95;�0:5; 0; 0:5; 0:95g, sample size n 2 f100; 250; 500; 1000g and � 2 f0; 0:5g. In the On-

line Appendix, we also present simulation results for � = 0:25 and � = �0:1, while additional

results for � 2 f�0:75;�0:25; 0:25; 0:75g are available upon request. The system is initialized

at x0 = 0. The IVX estimator and the corresponding Wald statistic are invariant to the value

of �, so we opt for � = 0. We consider the following sequence of local alternatives for power

comparisons:

A =
b

n

p
1� �2 for b 2 f0; 2; 4; ::; 32; 40; 60; 100g (25)
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with b = 0) A = 0 corresponding to the size of each test.

The results regarding the empirical size in the case of no autocorrelation in the predictor�s

innovation sequence ut (i.e., � = 0) are presented in Table 1. We observe that for sample

sizes n � 250 the Wald statistic has excellent size control across all values of C and �: For

n = 100, it only appears to be slightly oversized when j�j = 0:95 and C 2 f0;�5g. For the

other combinations of C and �, the Wald statistic has the correct size. On the other hand,

the Q-statistic appears to be undersized for moderate to high values of �, such as j�j = 0:5;

increasing the sample size does not seem to remedy this problem. Moreover, for autoregressive

roots away from unity and very high values of j�j, the Q-statistic becomes severely oversized; see

e.g., the combinations Rn = 0:5 and j�j 2 f0:95; 0:5g as well as Rn = 0:8 and j�j = 0:95. This

is a manifestation of the fact that the CY procedure is not valid for predictors with low degree

of persistence. Finally, the JM statistic also exhibits severe size distortions. The most striking

�nding is that it becomes extremely oversized across all degrees of regressor persistence when

j�j = 0. In addition, considering high values of j�j, such as j�j = 0:95, and autoregressive roots

away from unity, the JM statistic becomes severely oversized too. Its size distortions appear to

be minimized when j�j = 0:5.

�Table 1 here�

We subsequently examine the �nite-sample size of these three statistics in the presence of

autocorrelation in ut. Table 2 refers to the case where ut is an AR(1) process with root � = 0:5:

We �nd that the Wald statistic exhibits size very close to the nominal 5% apart from some

slight oversizing for n = 100, C 2 f0;�5g and j�j = 0:95. On the other hand, the Q-statistic has

size substantially lower than the nominal 5% for j�j = 0:5. Moreover, for C = �50, j�j = 0:95

and n = 100; 250; 500, the Q-statistic is severely oversized. Regarding the JM statistic, its size

distortions are exacerbated in the presence of autocorrelation. The statistic is severely oversized

for both high and low values of j�j across all degrees of regressor persistence. As in the case of

no autocorrelation, the size distortions of this statistic appear to be minimized when j�j = 0:5.

�Table 2 here�

We next examine the power properties of the three statistics. Our simulation study computes

power with respect to the local alternatives given in (25) without size adjustment, as there is
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no oversizing in the proposed Wald statistic. We present here results for sample size n =

250 and correlations � 2 f�0:95;�0:5; 0g, while the corresponding results for n = 1000 are

presented in the Online Appendix.6 The power plots presented here correspond to the case of

no autocorrelation in ut (i.e., � = 0), while in the Online Appendix we present the corresponding

power plots for � = 0:5.

Figure 1 presents the power of the three statistics for n = 250; � = �0:95 and for all values

of C considered. We observe that in the unit root case (C = 0), the Wald statistic has higher

power than the Q-statistic for alternatives close to the null hypothesis but this relationship is

reversed for alternatives farther away from the null. For all of the other persistence scenarios

(i.e., for all values of C < 0), the Wald statistic dominates the Q-statistic for any choice of

local alternative and �. The distance between the power curves of the two statistics increases in

favor of the Wald test as the persistence of the regressor is reduced towards stationarity (i.e., as

jCj increases). The last Panel of Figure 1 for C = �50 shows that despite being considerably

oversized in this case, the Q-statistic appears to have lower power in comparison to the (correctly

sized) Wald test. Moreover, the JM statistic is characterized by a remarkable lack of power,

with the exception of the unit root case. For lower degrees of regressor persistence, the power of

the JM statistic is approximately equal to its size even for alternatives far away from the null,

undermining further its suitability for predictability tests.

�Figure 1 here�

Figure 2 presents power comparisons for � = �0:5 and n = 250. The power of the Wald test

uniformly dominates that of the Q-statistic for all persistence scenarios, including that of a unit

root regressor (C = 0). As before, the dominance of the IVX over the CY procedure increases

as the degree of persistence is reduced towards stationarity. In addition, the power of the JM

statistic is much lower relative to the other two statistics, especially as we move away from the

unit root case.

�Figure 2 here�
6 In addition, simulation results for n 2 f100; 500g and � 2 f�0:75;�0:25g are available upon request. The

relative performance of the IVX and CY procedures is very similar to the results reported in this section; the
Wald statistic dominates the Q-statistic in terms of power, with the exception of the combinations � 2 f�0:95; 0g
and C = 0, where there is no dominating relationship.
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Figure 3 presents power comparisons for � = 0 and n = 250. The Q-statistic appears to have

higher power relative to the Wald statistic in the unit root case (C = 0). However, as the degree

of persistence is reduced (C < 0), the power of the Wald statistic becomes indistinguishable

from the power of the Q-statistic. The lack of power for the JM statistic relative to the Wald

and the Q-statistic is evident in this case too. Interestingly, this conclusion holds true even in

the cases where the JM statistic is severely oversized.

�Figure 3 here�

2.2 Conditionally Heteroskedastic DGP

Recalling that the asymptotic results for the proposed Wald statistic are also valid under condi-

tional heteroskedasticity, we employ a GARCH(1,1) DGP to examine the �nite-sample properties

of the statistic and compare them with the corresponding properties of the Q-statistic of CY

(see the Online Appendix for the DGP speci�cation).

Extensive simulation results are reported in the Online Appendix. We �nd that the Wald

statistic exhibits no size distortion for every parameter combination considered. The Q-statistic

exhibits correct size for � = 0, but it is oversized for the combination n = 100; j�j = 0:95 and

C = �50; while it is undersized when j�j = 0:5. With respect to the power of the tests, we �nd

that for � = �0:95 the Wald statistic dominates the Q-statistic for every degree of regressor

persistence considered. The same conclusion is derived for � = �0:5. For � = 0, we �nd that

in the unit root case (C = 0), the Q-statistic has higher power than the Wald statistic, while

for all other degrees of regressor persistence (C < 0), the two statistics appear to have the same

power.

2.3 Additional Monte Carlo results

We additionally examine the robustness of the power properties of the IVX-Wald statistic with

respect to the choice of kernel for the estimation of the long-run covariance matrix. In particular,

apart from the Bartlett kernel that we use in the benchmark results, we alternatively use: i)

the Parzen kernel and ii) the Quadratic Spectral kernel. Results are reported in the Online

Appendix. In most of the cases, we �nd that the power plots are almost indistinguishable across

the three kernels used.
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Finally, we examine the robustness of the power properties of the IVX-Wald statistic when

alternative lag lengths are used for the Newey-West estimator of the long-run covariance matrix.

In particular, apart from the truncation lag n1=3 that we use in the benchmark results, we

alternatively consider the following truncation lags: i) n1=4 and ii) n1=2, where n is the sample

size. Overall, the results presented in the Online Appendix show that the choice of truncation

lag yields no considerable di¤erence in terms of power.

2.4 Multivariate case

In this Section, we examine the �nite-sample performance of the Wald statistic in the context

of multivariate regressions. We generalise the DGP of Section 2.1 to include more than one

predictors. In particular, we use the following DGP:

yt = �+Axt�1 + "t; "t � NID(0; 1); (26)

xt = Rnxt�1 + ut; Rn = Ir + C=n; (27)

ut = �ut�1 + et; � = diag (�1; �2; �3) ; et � N (0;�) ; (28)

� = E
�
�t�

0
t

�
; �t =

�
"t; u

0
t

�0 (29)

where xt is a 3 � 1 vector that contains three regressors. Each regressor is characterised by a

di¤erent degree of persistence. In particular, we set C = diag (0;�10;�100), corresponding to

a unit root, a local-to-unity and a stationary regressor.7

To render the examined setup empirically relevant, we use values for � and � that are esti-

mated from a predictive system with the CRSP S&P 500 log excess returns being the regressand

and the earnings-price ratio (unit root), T-bill rate (local-to-unity) and in�ation rate (stationary)

being the regressors. In particular, Correlation Set 1 corresponds to the correlation structure

of the residuals (��s) and autocorrelation coe¢ cients (��s) that are estimated from monthly

data during the full sample period, while the corresponding parameters of Correlation Set 2

are estimated from quarterly data. In addition to these parameters, we also examine the size

properties of the Wald test when alternatively � = 03�3 (i.e., no autocorrelation), � = 0:25I3

and � = 0:5I3. Finally, we consider sample sizes n 2 f250; 500; 1000g :
7We would like to thank an anonymous referee for suggesting this setup.
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We examine the size properties of four di¤erent tests using a 5% signi�cance level. The �rst

one is the joint Wald test (Wjoint) under the null hypothesis that all three slope coe¢ cients are

jointly equal to zero, i.e., H0 : A=(0; 0; 0) in (26). The other three tests refer to the individual

signi�cance of each regressor. In particular, WUR corresponds to the Wald test under the null

hypothesis that the slope coe¢ cient of the unit root regressor is equal to zero, i.e., H0 : A1 = 0,

letting the other two slope coe¢ cients free. Similarly, WLTU corresponds to the Wald test under

H0 : A2 = 0 and WStationary corresponds to the Wald test under H0 : A3 = 0.

Table 3 presents the �nite-sample size of these four Wald tests. For Correlation Set 1 in

the upper Panel, we �nd that the size of the joint Wald test (Wjoint) is very close to the

nominal 5% across all autocorrelation structures examined. With respect to the test of individual

signi�cance for the unit root regressor (WUR), we �nd a slight oversizing, which peaks around

8%. However, this oversizing becomes almost negligible for the test of individual signi�cance for

the local-to-unity regressor (WLTU ), while the corresponding test for the stationary regressor

(WStationary) exhibits no size distortion. Examining the size properties using Correlation Set 2

in the lower Panel of Table 3, we �nd no size distortion across these four tests, regardless of the

autocorrelation structure used.

�Table 3 here�

We also examine the power properties of the joint Wald test under the null hypothesis

H0 : A=(0; 0; 0), as the slope coe¢ cient of each of the three regressors increases. In par-

ticular, WaldUR0:05 refers to the power of the joint test when, under the alternative, the slope

coe¢ cient of the unit root regressor takes non-zero values
�
A = b

n (1; 0; 0)
�
, WaldLTU0:05 refers to

the power of the joint test when the slope coe¢ cient of the local-to-unity regressor increases�
A = b

n (0; 1; 0)
�
, while WaldStationary0:05 refers to the power of the joint test when the slope coe¢ -

cient of the stationary regressor increases
�
A = b

n (0; 0; 1)
�
. Local alternatives are derived using

b 2 f0; 2; 4; :::; 32; 40; 60; 100g with b = 0 corresponding to the size of the test, while we consider

n 2 f100; 250; 500; 1000g.8

Figure 4 presents the power plots of the joint Wald statistic using Correlation Set 1, while

Figure 5 presents the corresponding power plots using Correlation Set 2. We �nd that in every

8Simulation results for the power properties of the individual signi�cance tests in the presence of multiple
regressors are available upon request.
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case examined, the joint Wald test has very good power properties, since the rejection rate

monotonically increases as the true value of the corresponding slope coe¢ cient increases. This

holds true for all sample sizes examined. Moreover, the power of the joint Wald test is remarkably

high even for low values of local alternatives for the slope coe¢ cient of the unit root and the

local-to-unity regressors.

�Figures 4 and 5 here�

3. Data and regressors�degree of persistence

We implement the proposed methodology to test the predictive ability of commonly used �nan-

cial variables with respect to excess stock market returns. The examined period is 1927�2012.

The employed dataset is an updated version of the one used in Welch and Goyal (2008).9 For our

benchmark predictability tests, we use monthly and quarterly data, while in the Online Appen-

dix we report results for annual data too. Following Welch and Goyal (2008), we use S&P 500

value-weighted log excess returns to proxy for excess market returns. Moreover, we use the fol-

lowing 12 variables as potential predictors: T-bill rate (tbl), long-term yield (lty), term spread

(tms), default yield spread (dfy), dividend-price ratio (d/p), dividend yield (d/y), earnings-

price ratio (e/p), dividend payout ratio (d/e), book-to-market value ratio (b/m), net equity

expansion (ntis), in�ation rate (inf) and consumption-wealth ratio (cay). We present the de-

�nitions of these variables as well as a list of prior studies that have examined their predictive

ability in the Online Appendix. It should be noted that cay is only available at quarterly and

annual frequency, starting from 1952 for quarterly and 1945 for annual data.

One of the main advantages of the IVX methodology is that, by virtue of its robustness,

it does not require any pre-testing to determine the degree of predictors�persistence prior to

conducting predictability tests. Pre-testing procedures naturally increase the Type I error of

predictability tests and may well lead to con�icting empirical conclusions. To demonstrate this

point, we report for each regressor in Table 4 the least squares point estimate of the autoregressive

root bRn from regression (2) using monthly data as well as the results of four unit root tests that

are commonly used as pre-tests: the Augmented Dickey Fuller (ADF) test, the DF-GLS test

9The dataset updated up to December 2012 is sourced from Amit Goyal�s website:
http://www.hec.unil.ch/agoyal/
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by Elliott, Rothenberg and Stock (1996), the Phillips-Perron (PP) test as well as the KPSS

test by Kwiatkowski, Phillips, Schmidt and Shin (1992); the lag length for ADF and DF-GLS

is determined by the Bayesian information criterion. It is remarkable how close to unity the

estimated root is for most of the variables: for d/y, d/p and e/p the estimated root is exactly

equal to unity up to three decimal points. The four pre�tests agree on the existence of a unit

root only for lty, d/y and d/p. For the remaining variables, the tests yield contradictory results.

Even for inf, which exhibits a relatively low autoregressive root, the KPSS test would reject the

null hypothesis of no unit root at the 5% level.

�Table 4 here�

Table 5 contains the corresponding results for quarterly data, con�rming that these variables

exhibit a very high degree of persistence, even when they are measured at a lower frequency,

and that their autoregressive root is very close to unity, with the exception of inf. Interestingly,

cay also exhibits a very high autoregressive root and the ADF and PP tests would not reject the

null hypothesis of unit root. The evidence provided in the Online Appendix using annual data

is very similar, though the autoregressive coe¢ cients are somewhat lower for some variables.

Overall, neither the conclusions of the pre-tests nor the estimated autoregressive roots alleviate

the uncertainty on the exact degree of persistence of the employed regressors, regardless of the

frequency used. This observation, along with Type I error considerations, motivates further the

use of the proposed IVX econometric framework.

�Table 5 here�

4. Predictability tests

4.1 Univariate regressions

4.1.1 Monthly data We �rstly examine the individual predictive ability of each of the em-

ployed regressors using monthly data. Table 6 contains the results for these univariate regressions

using the proposed IVX estimator and the corresponding Wald statistic under the null hypoth-

esis of no predictability. For comparison, we also report: i) the t-ratio under the standard least

squares approach, ii) the 90% Bonferroni con�dence interval from the Q-statistic of CY and
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iii) the p-value for the JM statistic. Moreover, we report the correlation coe¢ cient (�) of the

residuals from regressions (1) and (2) as a measure of the regressor�s degree of endogeneity.

�Table 6 here�

Panel A reports the results for the period January 1927�December 2012. Using our test

statistic, we �nd that the null of no predictability can be rejected at the 5% level only when

the lagged e/p, b/m and ntis are used as predictors; d/y is signi�cant only at the 10% level.

To the contrary, there is no evidence of signi�cant predictive ability for d/e, lty, d/p, tbl, dfy,

tms and inf in the full sample period. Comparing our �ndings with the other test statistics,

there are important di¤erences with respect to which predictors are signi�cant and at what

level. Standard least squares inference indicates that d/y is signi�cant at the 5% and that ntis

is signi�cant only at the 10% level. More interestingly, the Q-test of CY fails to report the

signi�cance of e/p even at the 10% level. Calculating 95% Bonferroni con�dence intervals for

the Q-test in unreported results we �nd that only ntis is signi�cant at the 5% level. These

�ndings are in line with our simulation results for the size properties of the Q-test, where we

documented that it tends to underreject for large sample sizes (n = 1; 000) and for moderate to

high degrees of endogeneity, such as the one estimated for e/p (� = �0:76). Finally, the JM test

does not �nd e/p or b/m to be signi�cant predictors, while it does so for tbl and dfy, which are

insigni�cant according to our test.

Panel B of Table 6 reports the corresponding results for the period after 1952. This subperiod

is examined for two reasons. Firstly, the term structure variables (tbl, tms and lty) are thought

to be more informative since the Fed abandoned its policy of pegging the interest rate (1951

Treasury Accord). Moreover, cay becomes available at quarterly frequency during this period.

Secondly, prior studies (see e.g., CY) have found that the evidence of predictability has weakened

in more recent sample periods, and hence it can be attributed to early periods when such

patterns were not documented. The proposed testing methodology can shed further light on

this conjecture.

In fact, the predictability evidence almost entirely disappears in the post�1952 period. The

IVX-Wald test indicates that only inf is signi�cant at the 5% level. Moreover, tbl and tms are

signi�cant at the 10% level, supporting the argument that the term structure variables may have

become more informative after 1952. Similar is the evidence based on the Q-test of CY, with
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the main di¤erence that their test additionally �nds d/y to be marginally signi�cant at the 10%

level. More striking are the di¤erences with least squares inference, according to which both d/y

and d/p are signi�cant at the 10% level, while tbl is signi�cant at the 5% level, demonstrating

its tendency to overreject the null of no predictability. Using the JM test would also lead to

conclusions that are considerably di¤erent from ours. Most importantly, this test indicates d/y

as a signi�cant predictor, while it fails to do so for tbl and inf. Overall, our results support the

argument that predictability has considerably weakened, if not disappeared, after 1952.

4.1.2 Quarterly data We subsequently estimate the univariate predictive regressions using

quarterly data and we report the corresponding results in Table 7 for the full sample period

(Panel A) and the post�1952 period (Panel B), respectively. The results are very similar to

the ones we derived using monthly data. In particular, the IVX-Wald test indicates that in

the full sample period, e/p, b/m and ntis are again found to be signi�cant predictors at the

5% level, while we also report signi�cance for d/p at the 10% level. Standard least squares

inference would point to similar conclusions, with even lower p-values due to the tendency of the

t-test to overreject. More striking is the comparison with the inference derived from the Q-test.

In particular, the latter fails to �nd signi�cance for either e/p or b/m even at the 10% level,

demonstrating again a tendency to underreject for moderate to high values of �. The inference

derived from the JM test is also very di¤erent from ours. In particular, the JM test fails to

report signi�cance for e/p and d/p, while it indicates d/y and dfy as strongly signi�cant.

�Table 7 here�

For the post�1952 period we �nd that, according to the IVX-Wald test, only tms out of the

previously used variables remains signi�cant at the 10% level. The rest of the tests also show

that predictability has overall weakened in this subperiod, but they additionally �nd some other

variables to be signi�cant predictors, at least at the 10% level. The most interesting �nding

is that cay, which becomes available after 1952, is a highly signi�cant predictor across all tests

considered, including our Wald test. This striking �nding corroborates the results of Lettau and

Ludvigson (2001) for the updated sample period that we examine.

Taken together with the corresponding univariate results for annual data reported in the On-

line Appendix, the Wald test indicates that there is signi�cant evidence of in-sample predictabil-

24



ity for e/p, b/m and ntis in the full sample period, and weaker evidence for the dividend-based

ratios. However, this evidence almost entirely disappears during the post�1952 period, with the

exception of some rather weak evidence for the term structure variables (tms and tbl). The only

variable that is found to be strongly signi�cant in the post�1952 period is cay.

4.2 Multivariate regressions

The previous Section considered univariate predictability tests. However, it is common practice

to employ multiple regressors and to assess their joint signi�cance; this approach is informa-

tive for market e¢ ciency tests since predictability should be assessed with respect to the entire

information set, not each variable in isolation (see also Cochrane, 2011, for a discussion of

the multivariate challenge in predictability tests). Moreover, multivariate predictive regres-

sions are widely used in VAR systems for intertemporal asset pricing tests (e.g., Campbell

and Vuolteenaho, 2004) as well as in conditional performance evaluation studies (e.g., Ferson,

Sarkissian and Simin, 2008). Additionally, from a theoretical point of view, recently developed

present value models (see e.g., Ang and Bekaert, 2007, and Golez, 2014) suggest that d/p alone

cannot capture the variation in expected stock returns due to stochastic discount rates and/or

dividend growth, and hence it should be used jointly with other predictors.

Given the importance of multivariate predictive systems, it is unfortunate that the recent

methodological contributions that correct for the bias arising in least squares inference are

developed for univariate regressions only. The notable exception is the iterative procedure of

Amihud et al. (2009), which is based on the augmented regression method of Amihud and

Hurvich (2004) and accommodates multiple regressors in a single-horizon predictive setup under

the restriction that the predictors are stationary. Their procedure yields a reduced-bias estimator

and the corresponding test statistic is shown to have good size properties, which, however,

deteriorate as the persistence of the predictors approaches the nonstationarity boundary.

On the other hand, our instrumental variable approach introduces an easy-to-implement

Wald statistic, enabling us to conduct valid inference regardless of the dimensionality of the

predictive system and for all known types of regressors�persistence, from strictly stationary to

unit root processes, while it is also applicable to long-horizon predictive systems. The proposed

Wald test allows us to examine the joint as well as the individual signi�cance of the regressors
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used in a multivariate system. In particular, to test their joint signi�cance, we compute the

Wald statistic (19) under the null hypothesis that all slope coe¢ cients are equal to zero, i.e.,

H0 : A = 01xr, while the individual signi�cance of each predictor is evaluated under the null

hypothesis that the corresponding slope coe¢ cient is equal to zero, i.e., H0 : Ai = 0:

We utilize this test to re-examine the predictive ability of certain combinations of regressors

that were found to be signi�cant in prior studies and they are motivated from either a theoretical

or an empirical point of view. In particular, we use the following combinations: i) d/p and

tbl (Ang and Bekaert, 2007), ii) d/p, tbl, dfy and tms (Ferson and Schadt, 1996), iii) d/p

and b/m (Kothari and Shanken, 1997), iv) d/p and d/e (Lamont, 1998) and v) e/p, tms and

b/m (Campbell and Vuolteenaho, 2004). Additionally, we follow a general-to-speci�c statistical

approach to come up with the best set of predictors. In particular, starting with a base system

that includes d/p, e/p, tbl, tms, dfy and ntis, we eliminate in each estimation round the variable

exhibiting the lowest (and insigni�cant) value of individual Wald statistic. This process is

repeated until all remaining variables are individually signi�cant at the 10% level or lower.10

4.2.1 Monthly data Table 8 reports the results for monthly data. Panel A contains the

results for the full sample period. Interestingly, we �nd that none of the examined combinations

leads to joint signi�cance at the 5% level. Only the combination of e/p, b/m and tms is jointly

signi�cant at the 10% level, but none of these predictors�coe¢ cients is individually signi�cant.

It is also noteworthy that d/p is individually insigni�cant in all combinations examined, apart

from the case where it is used jointly with d/e. This �nding casts more doubt on its predictive

ability over short-horizon returns. On the other hand, the general-to-speci�c approach leads to

a rather interesting �nding: e/p and tbl are both jointly and individually signi�cant at the 5%

level.

�Table 8 here�

Panel B reports the corresponding results for the post�1952 period, leading to very similar

conclusions. None of the �ve combinations considered is found to be jointly signi�cant and d/p is

individually insigni�cant in every case. Only tbl and tms are found to be individually signi�cant

in some cases, con�rming that term structure variables may be indeed more informative in the

10We would like to thank the Editor for suggesting this approach.
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post�1952 period. The general-to-speci�c approach yields again the most interesting result: e/p

and tbl are jointly and individually signi�cant during this subperiod too. As a robustness test,

we have alternatively included b/m instead of d/p in the base system; unreported results show

that we still end up with e/p and tbl being the only two individually and jointly signi�cant

predictors in both periods.

4.2.2 Quarterly data We repeat the previous analysis using quarterly data and we report

these results in Table 9. Panel A contains the full sample period results. We �nd that combina-

tions that include b/m lead to joint signi�cance, but the regressors�coe¢ cients are insigni�cant.

Moreover, we �nd that d/p is individually signi�cant in some combinations, but none of these

yields joint signi�cance. On the other hand, according to the general-to-speci�c approach, e/p,

tbl and ntis are both individually and jointly signi�cant.

�Table 9 here�

Panel B reports the corresponding results for the post�1952 period. Interestingly, we �nd

that none of these �ve combinations yields joint signi�cance. Since cay becomes available in this

subperiod, we additionally examine the combination of d/p, d/e and cay, which was considered

in Lettau and Ludvigson (2001). In fact, we �nd that this combination and cay�s coe¢ cient are

signi�cant at the 1% level. Moreover, we also include cay in the base system for the general-to-

speci�c approach, given its strong signi�cance in univariate tests. This approach yields a highly

signi�cant combination of e/p, tbl, cay and dfy for this subperiod.

Taken together, the multivariate results for monthly and quarterly data show that commonly

used combinations of these regressors have limited predictive ability, especially in the post�1952

period. However, a general-to-speci�c approach indicates that the combination of e/p and tbl is

highly signi�cant and robust to the choice of data frequency and the examined period. Finally,

these results con�rm that cay is a highly signi�cant predictor in the post�1952 period and this

signi�cance is not subsumed by other commonly used variables.

5. Long-horizon predictive regressions

The previous tests examined short-horizon predictability using 1-period ahead returns. A re-

lated debate in the literature refers to the existence of long-horizon predictability. In particular,
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a number of studies have found that the predictive ability of certain �nancial variables becomes

stronger as the horizon increases (see inter alia the surveys of Cochrane, 1999, and Campbell,

2000). On the other hand, some recent studies cast doubt on this prevailing view (see Valkanov,

2003, Torous et al., 2004, Ang and Bekaert, 2007, Boudoukh et al., 2008 and Hjalmarsson, 2011).

In particular, Ang and Bekaert (2007) �nd no evidence of long-horizon predictability using stan-

dard errors based on the reverse regression approach of Hodrick (1992), which removes the

moving average structure in the error term induced by summing returns over long horizons, and

hence retains the correct size, as compared to Hansen-Hodrick (1980) and Newey-West (1987)

standard errors that lead to severely oversized test statistics.11 Moreover, Valkanov (2003) and

Boudoukh et al. (2008) show that in the presence of highly persistent regressors, predictability

may arti�cially emerge in standard least squares regressions as the horizon increases. We con-

tribute to this debate by extending the proposed IVX-Wald test to accommodate long-horizon

predictive regressions and conducting the corresponding empirical tests.12 Section 5.1 develops

a long-horizon IVX-Wald test, Section 5.2 examines the �nite-sample properties of the newly

developed Wald test, while Section 5.3 discusses the corresponding empirical results.

5.1 Long-horizon IVX inference

Long-horizon predictability tests are typically based on estimators derived from regressing the

K-period cumulative stock return yt (K) on a lagged predictor xt�1 and an intercept as in the

following �tted model:

yt (K) = �f +Axt�1 + �f;t t 2 f1; :::; n�K + 1g (30)

with yt (K) =
PK�1
i=0 yt+i, while the DGP characterizing the true relationship between yt and

xt continues to be given by (1). For brevity, we introduce the notation vt (K) =
PK�1
i=0 vt+i for

any sequence (vt)t�1 and let nK = n�K + 1.

It is clear that the accumulation of predicted variables on the left side of (30) generates

additional correlations that are not present in short-horizon regressions and a¤ect the stochastic

properties of long-horizon estimators. To �x ideas, assume temporarily that the intercepts �

11The recent study of Wei and Wright (2013) extends the reverse regression approach of Hodrick (1992) to a
wider range of null hypotheses even when the predictors are local-to-unity processes.

12We would like to thank the Editor for suggesting the extension of IVX methodology to the long-horizon case.
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in (1) and �f in (30) are equal to zero. Then, the OLS estimator of A from (30) is given by

ÂOLS (K) =
PnK
t=1 yt (K)x

0
t�1
�PnK

t=1 xt�1x
0
t�1
��1. Using the DGP (1), it is easy to see that the

above OLS estimator is inconsistent for K > 1:

ÂOLS (K) =

"
A

nKX
t=1

xt�1 (K)x
0
t�1 +

nKX
t=1

"t (K)x
0
t�1

# 
nKX
t=1

xt�1x
0
t�1

!�1
;

the inconsistency occurring because
PnK
t=1 xt�1 (K)x

0
t�1 has the same order of magnitude asPnK

t=1 xt�1x
0
t�1 for �xed horizon K and dominates

PnK
t=1 xt�1x

0
t�1 asymptotically when K !1.

This imbalance can be easily corrected by modifying the OLS estimator:

ÂmOLS (K) =

nKX
t=1

yt (K)x
0
t�1

 
nKX
t=1

xt�1 (K)x
0
t�1

!�1
: (31)

While this modi�ed OLS estimator is consistent, the limit distribution of ÂmOLS (K)�A (under

suitable normalisation) will not be mixed Gaussian in the case of unit root and local-to-unity

regressors. Consequently, inference procedures based on ÂmOLS (K) will not be valid across the

range of persistence classes P(i)-P(iv) of Section 1, leading to erroneous empirical conclusions

in the case of misspeci�cation of regressor persistence. IVX methodology can be adapted to

deliver robust inference in long-horizon predictive regression systems. The key idea is the same

as in the short-horizon case: given a consistent least squares estimator, the IVX estimator is

constructed as a feasible instrumental variables estimator that replaces the regressor xt by the

IVX instrument ~zt in (31):

ÂIV X (K) =

nKX
t=1

yt (K) ~z
0
t�1

 
nKX
t=1

xt�1 (K) ~z
0
t�1

!�1
:

In the general case where the intercept terms � in (1) and �f in (30) are non-zero, a standard

result on partitioned regression yields that least squares estimation of A from the regression (30)

is equivalent to least squares estimation of A from the regression:

yt (K)� �ynK (K) = A (xt�1 � �xnK�1) + #t t 2 f1; :::; nKg (32)

where �ynK (K) = n�1K
PnK
t=1 yt (K) and �xnK�1 (K) = n�1K

PnK
t=1 xt�1 (K) denote the sample

29



means of yt (K) and xt�1 (K) and �ynK and �xnK�1 denote the usual sample means of yt and

xt�1 based on the �rst nK observations, respectively. We de�ne the data matrices XnK�1 =�
x00 � �x0nK�1; :::; x

0
nK�1 � �x

0
nK�1

�0
; ~Z (K) =

�
~z00 (K) ; :::; ~z

0
nK�1 (K)

�0,
Y (K) =

�
y01 (K)� �y0nK (K) ; :::; y

0
nK
(K)� �y0nK (K)

�0
X (K) =

�
x00 (K)� �x0nK�1 (K) ; :::; x

0
nK�1 (K)� �x

0
nK�1 (K)

�0
and ~ZnK�1 =

�
~z00; :::; ~z

0
nK�1

�0
; where, as before, underlying indicates demeaning. The modi�ed

OLS estimator from (30) (equivalently from (32)) can be expressed as:

~AmOLS (K) = Y (K)
0XnK�1

�
X (K)0XnK�1

��1
and the corresponding IVX estimator of A is given by:

~AIV X (K) = Y (K)
0 ~ZnK�1

h
X (K)0 ~ZnK�1

i�1
: (33)

The asymptotic behavior of the normalized and centred IVX estimator in (33) is summarized

by Theorem B in the Appendix; asymptotic mixed Gaussianity is preserved irrespective of the

degree of persistence of the predictor variable in (2), as long as the rate of growth of the horizon

K is slower than that of the sample size n. This requirement is presented formally below.

Assumption H. The horizon K may be a �xed integer or a sequence (Kn)n2N that increases

to in�nity slower than the sample size n: Kn=n! 0 as n!1:

As in the short-horizon case, the asymptotic mixed normality property of the long-horizon

IVX estimator ~AIV X (K) implies that the associated IVX-Wald test statistic will have a standard

chi-squared limit distribution across the whole range of empirically relevant persistence classes

P(i)-P(iv). In particular, we propose the following IVX-Wald statistic for testing the set of linear

restrictions (18) in long-horizon predictive regression systems:

WIV X (K) =
h
Hvec ~AIV X (K)� h

i0
Q�1H;K

h
Hvec ~AIV X (K)� h

i
(34)
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where

QH;K = H

��
~Z 0n�KX (K)

��1

 Im

�
MK

��
X (K)0 ~Zn�K

��1

 Im

�
H 0

MK = ~Z (K)0 ~Z (K)
 �̂"" � nK �znK�1 (K) �z0nK�1 (K)
 
̂FM

�znK�1 (K) = n
�1
K

PnK
t=1 ~zt�1 (K) and 
̂FM is de�ned in (21).

Theorem 2. Consider the model (1)�(3) under Assumption INNOV with (9) and H. Then,

the IVX-Wald statistic in (34) for testing (18) satis�es

~WIV X (K)) �2 (q) as n!1

under H0 for the following classes of predictor processes xt in (2):

(i) P(i)-P(iv) under Assumption INNOV(i)

(ii) P(i)-P(iv) under Assumption INNOV(ii) when K !1

(iii) P(i)-P(iii) under Assumption INNOV(ii) when the horizon parameter K is �xed.

Theorem 2 shows that, under Assumption H, the robustness property of IVX methodology

extends to long-horizon predictive regressions. Note that when K = 1, the long-horizon IVX

estimator (33) and the associated IVX-Wald statistic (34) reduce to their short-horizon counter-

parts (17) and (19), respectively. Note also the robustness that the IVX-Wald statistic exhibits

to conditional heteroskedasticity for purely stationary regressors when K ! 1: this is due to

the persistence that the horizon K induces in the predictive regression; see the discussion in the

penultimate paragraph of Section 1.

5.2 Finite-sample properties

In this Section, we examine the �nite-sample properties of the long-horizon Wald statistic in

(34) that corresponds to the long-horizon predictive regression in (30). For this Monte Carlo

study, we use the DGP speci�ed in (22)�(24) for the univariate case. In particular, we consider

the following parameter values: C 2 f0;�5;�10;�15;�20;�50g ; � 2 f�0:95;�0:5; 0g, n 2

f100; 500; 1000g and � = 0: For sample size n = 100, we consider predictive horizons K =
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2; 3; 4; 5, for n = 500 we consider K = 4; 8; 12; 20, while for n = 1000 we use K = 4; 12; 36; 60.

Table 10 presents the �nite-sample size of the long-horizon Wald statistic. These simulation

results show that the size of the proposed test is remarkably close to the nominal 5% level for

all cases considered.

�Table 10 here�

We also examine the power properties of the long-horizon Wald statistic, using local alter-

natives A = b
n with b 2 f0; 2; 4; ::; 32; 40; 60; 100g. Power plots for sample size n = 1000 and

horizons K = 12; 36; 60 as well as for sample size n = 500 and horizons K = 4; 12; 20 are pre-

sented in the Online Appendix.13 In sum, these plots show that for all horizons considered, the

power of the statistic rapidly increases as the true value of A increases. Moreover, in each case,

the power of the statistic decreases as the predictive horizon increases, but this decrease is very

small for highly persistent regressors.

5.3 Empirical results

Table 11 reports the results from long-horizon univariate predictability tests using monthly data.

In the full sample period (Panel A), we �nd no evidence that predictability becomes stronger

as the horizon increases, with the exception of tms. To the contrary, the predictive ability of

e/p and b/m weakens, being signi�cant only at the 10% level when we examine horizons longer

than 12 and 36 months, respectively. Only tms and ntis are signi�cant at the 5% level when we

examine a 60-month horizon. Regarding d/y and d/p, these are not signi�cant at the 5% level

regardless of the examined horizon.14 In the post�1952 period (Panel B), predictability almost

entirely disappears, especially for horizons beyond 24 months. We �nd that only d/e becomes

signi�cant at long horizons, while tms remains marginally signi�cant at the 10% level.

�Table 11 here�

Table 12 reports the corresponding long-horizon tests using quarterly data. In the full sample

period (Panel A), predictability becomes weaker as the horizon increases. Interestingly, e/p, b/m

13The corresponding power plots for n = 100 are available upon request.
14To the contrary, in unreported results we �nd that using Newey-West or Hansen-Hodrick standard errors to

calculate least squares t-ratios, d/y and d/p (as well as most of the other variables) would erroneously appear as
highly signi�cant for horizons of 12 months or longer. The �ndings are similar when we consider quarterly data.
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and ntis, which were found to be strongly signi�cant in predicting 1-quarter ahead returns (see

Table 7), become less signi�cant as the horizon increases and they are eventually insigni�cant

at the 20-quarter horizon; d/p remains signi�cant at the 10% level for all horizons considered,

while tms becomes marginally signi�cant at very long horizons. In the post�1952 period (Panel

B), there is no evidence of predictability with three exceptions: tms remains signi�cant but only

at the 10% level, d/e becomes marginally signi�cant beyond 8 quarters, while cay is the only

variable that remains signi�cant at the 5% level for all horizons examined. Similar is the pattern

of the corresponding results using annual data that are reported in the Online Appendix.

�Table 12 here�

In sum, our evidence is in line with the results of the above cited studies that cast doubt on

the ability of commonly used variables to predict stock returns at long horizons, especially in

the post�1952 period. We actually �nd that, if anything, predictability is generally weaker, not

stronger, as the horizon increases.

Table 13 presents the results for long-horizon predictability tests with multiple regressors.

We present only the combinations of regressors that were found to be both individually and

jointly signi�cant under the general-to-speci�c approach described in Section 4.2 and reported

in Tables 8 and 9, using 1-month and 1-quarter ahead returns, respectively. Panel A reports the

results for monthly data. In the full sample period, we �nd that while e/p remains individually

signi�cant, tbl becomes insigni�cant as the horizon increases. Their joint predictive ability

remains signi�cant, but only at the 10% level for horizons beyond 12 months. For the post�

1952 period results are more striking: e/p and tbl are neither individually nor jointly signi�cant

beyond 12 months.

�Table 13 here�

Using quarterly data in Panel B, we get a similar pattern. For the full sample period, only

e/p remains individually signi�cant for all the examined horizons, while neither tbl nor ntis

are signi�cant for longer than 8-quarter horizons; the joint signi�cance of these three variables

becomes weaker as we increase the predictive horizon and eventually disappears at the 20-quarter

horizon. For the post�1952 period, we �nd that at horizons longer than 4 quarters, only cay

is individually signi�cant at the 5% level, driving the joint signi�cance of the corresponding
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multivariate system. Overall, our evidence is in broad agreement with the results of Ang and

Bekaert (2007), who found that tbl can predict future stock returns within a multivariate setup

only at short (less than 1-year) horizons.

6. Conclusion

This study revisits the popular issue of stock return predictability via lagged �nancial variables.

We conduct a battery of predictability tests for US stock returns during the 1927�2012 period,

proposing a novel methodology, termed as IVX estimation, which is robust to the time series

properties of the employed regressors. The uncertainty regarding the order of integration of these

predictive variables has been characterized as a main source of concern for invalid inference,

especially in the presence of endogenous regressors (see Stambaugh, 1999, and CY); the robust

methodology we propose successfully addresses this concern. In univariate tests, we �nd that the

earnings-price and book-to-market value ratios as well as net equity expansion are signi�cant

predictors of 1-period ahead excess market returns. However, this evidence almost entirely

disappears in the post�1952 period. Only the consumption-wealth ratio is found to be strongly

signi�cant in this subperiod.

Apart from robustifying inference in predictability tests, this novel methodology presents two

additional, particularly attractive features. Firstly, it leads to standard chi-squared inference,

and hence the construction of Bonferroni-type con�dence intervals is avoided. Such a simpli�-

cation is mostly welcome for practical purposes, given the large number of predictive regressors

that have been employed in prior literature. Secondly, the IVX estimation methodology is ap-

plicable to multivariate systems of both regressors and regressands. This facility allows us to

test a wide range of predictability relationships. Most obviously, we can test for the joint ability

of a set of regressors to predict stock market returns. While this issue was the main motiva-

tion of the early studies in the literature (e.g., Fama and French, 1989), most of the recently

suggested econometric methodologies have been restricted to setups with a scalar regressor (see

Torous et al., 2004, CY, JM, and Hjalmarsson, 2011). Our multivariate tests document that the

combination of the earnings-price ratio and T-bill rate is highly signi�cant and robust to the

choice of data frequency and examined period.

Interestingly, the proposed testing procedure can be extended to long-horizon predictive
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regressions. We develop the relevant test statistic and we show that it exhibits very good �nite-

sample properties. Using this newly developed statistic, our long-horizon tests document that,

if anything, predictability becomes weaker, not stronger, as the horizon increases. Only the

consumption-wealth ratio remains strongly signi�cant for all horizons examined. This evidence

is in agreement with the results of recent studies casting doubt on the prevailing view that

predictability becomes stronger as the horizon increases (see inter alia Ang and Bekaert, 2007,

and Boudoukh et al., 2008).

Concluding, the proposed IVX estimation methodology improves testing in predictive re-

gressions both by extending the range of testable hypotheses and by robustifying inference with

respect to misspeci�cation of regressors�persistence. This novel econometric methodology can

prove useful for predictability tests in other asset classes too. Successful implementation can

shed new light on whether bond yields and exchange rate �uctuations are predictable via pub-

licly available information. Since predictability tests in these asset classes also rely on persistent

regressors with uncertain order of integration, this robust methodology can minimize the risk of

distorted inference due to incorrect time series modelling.

35



Appendix: Asymptotic mixed Gaussianity of the IVX estimator

This Appendix provides a summary and discussion of the asymptotic behavior of the normalized

and centred IVX estimator ~AIV X in (17) and ~AIV X (K) in (33) arising from short-horizon and

long-horizon predictive regressions, respectively. The key property of ~AIV X and ~AIV X (K)

that ensures robustness of the IVX procedure and a chi-squared limit distribution for the IVX-

Wald test statistic is asymptotic mixed normality. Theorem A below shows that asymptotic

mixed normality applies to all predictors belonging to the classes P(i)-P(iv) of autoregressive

processes irrespective of their persistence properties. Theorem B shows that the asymptotic

mixed normality property of the IVX estimator extends to long-horizon predictive regression

systems. We employ the shorthand notation a ^ b = min (a; b) and a _ b = max (a; b).

Theorem A. Consider the model (1)�(3) under Assumption INNOV with instruments ~zt de-

�ned by (4) and (5). Let Bu be a r-variate Brownian motion with covariance matrix 
uu,

JC (t) =
R t
0 e

C(t�s)dBu (s) be an Ornstein-Uhlenbeck process and let

Bu (t) = Bu (t)�
Z 1

0
Bu (t) dt, JC (t) = JC (t)�

Z 1

0
JC (t) dt

denote the demeaned versions of Bu and JC . The following limit theory as n!1 applies for

the estimator ~AIV X in (17):

(i) when � < � ^ 1, n
1+�
2 vec

�
~AIV X �A

�
)MN

�
0;
�
~	�1uu

�0
CzVCzCz ~	

�1
uu 
 �""

�
(ii) when � 2 (0; �), n 1+�

2 vec
�
~AIV X �A

�
) N

�
0; V �1C 
 �""

�
(iii) when � = � > 0, n

1+�
2 vec

�
~AIV X �A

�
) N

�
0;V�1C�1VCC�1 (V0)�1 
 �""

�
(iva) when � = 0,

p
nvec

�
~AIV X �A

�
) N

�
0;
�
Ex0;1x

0
0;1

��1 
 �""� under INNOV(i)
(ivb) when � = 0,

p
nvec

�
~AIV X �A

�
) N (0; V0) under INNOV(ii)

where x0;t =
P1
j=0R

jut�j with R = Ir + C is a stationary version of xt when � = 0,

the covariance matrices VC , VCz , V and V0 are given by

VC =

Z 1

0
erC
uue

rCdr, VCz =
Z 1

0
erCz
uue

rCzdr, V =
Z 1

0
erCVCe

rCzdr,

V0 =
��
Ex0;1x

0
0;1

��1 
 Im�E �x0;1x00;1 
 "2"02� ��Ex0;1x00;1��1 
 Im� (35)
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and the random covariance matrix ~	uu is given by

~	uu =

8>>>><>>>>:

uu +

R 1
0 BudB

0
u under P(i)


uu +
R 1
0 JCdJ

0
C under P(ii)


uu + VCC under P(iii).

The proof of Theorem A can be found in the Online Appendix.

Remarks A.

(a) Theorem A establishes asymptotic mixed normality of the IVX estimator in predictive

regression systems the validity of which is invariant to the persistence properties of the

generating mechanism of the predictor process xt. The fact that asymptotic mixed nor-

mality extends over the entire range P(i)-P(iv) of autoregression-induced persistence is

the key property that ensures robustness of the IVX procedure. The varying rates of

convergence and expressions of the (possibly random) limit variance of the IVX estimator

along di¤erent persistence classes do not a¤ect self-normalized test statistics such as that

of the Wald test considered in (19): mixed normality will deliver standard chi-squared

asymptotic inference for IVX based self-normalized quadratic forms.

(b) Theorem A shows that the presence of an intercept in the model does not a¤ect the

main asymptotic property of IVX estimation, mixed Gaussianity. This, however, is a

�rst-order asymptotic result. In �nite samples, the e¤ect of estimating the intercept may

become manifest for predictor processes xt exhibiting high degree of persistence and strong

correlation with the innovations "t of the predictive equation (1). In this case, represented

by part (i) of Theorem A, the sample moment that drives mixed normality can be written

as

n�
1+�
2 E 0 ~Z = n�

1+�
2

nX
t=1

"t~z
0
t�1 � n

1��
2 �"n�z

0
n�1:

The �rst term on the right hand side has a N
�
0; V �1Cz


 �""
�
limit distribution which

produces the mixed normal limit result for the IVX estimator in part (i) of Theorem A.

Using part (i) of Lemma A1 in the Online Appendix, the second term can be analyzed as
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follows:

n
1��
2 �"n�z

0
n�1 =

�C�1z
n
1��
2 n

1��
2

 
1p
n

nX
t=1

"t

!
x0n
n�=2

= Op

�
n�

1��
2 n�

1��
2

�
(36)

We conclude that the term in (36) is asymptotically negligible across the whole range

P(i)-P(iv) of predictor processes but its �nite-sample contribution depends simultaneously

on three factors: the degree of regressor persistence �; the correlation between innova-

tions "t and ut; and the choice of � in the instrumentation procedure. The �nite-sample

impact of the remainder term in (36) is more prominent for highly persistent regressors:

persistence of the unit root and local-to-unity type P(i) and P(ii) results to a �nite-sample

contribution of exact order Op
�
n�

1��
2

�
in (36); the magnitude of this �nite-sample con-

tribution declines continuously as the persistence parameter � drives the predictor process

towards stationarity and assumes the minimal rate Op
�
n�1+�=2

�
for stationary predictors

belonging to the class P(iv). Strong (positive or negative) correlation also exacerbates the

�nite-sample e¤ect of estimating the intercept in (1): by a simple application of the central

limit theorem to (36), it is clear that a unit root predictor xn =
Pn
t=1 ut induces �nite-

sample bias of the form �C�1z n�
1��
2 
"u, the magnitude of which depends on the long-run

covariance 
"u between the innovations of (1) and (2), de�ned in (12). All �nite-sample

e¤ects (irrespective of their source) are simultaneously removed by the �nite-sample cor-

rection (20) on the self-normalizing component of the IVX-Wald statistic. This correction

employs a weighted demeaning of the IVX instruments by a matrix that depends on 
̂"u

in a way that balances the �nite-sample contribution of (36) for all persistence and corre-

lation combinations conforming to P(i)-P(iv) and Assumption INNOV and all admissible

choices of the IVX tuning parameter �.

Theorem B. Consider the model (1)�(3) under Assumption INNOV with (9) and Assumption

H. The limit distribution as n!1 of the normalized and centred long-horizon IVX estimator

in (33) is mixed Gaussian of the following form:

(i) when K=n�^� ! 0, n
1+(�^�)

2 vec
h
~AIV X (K)�A

i
)MN (0; Q1 
 �""),

Q1 =
�
~	�1uu

�0
CzVCzCz ~	

�1
uu if � < �; Q1 = V

�1
C if � < �
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(ii) when K=n� ! 0, K=n� !1,
p
nKvec

h
~AIV X (K)�A

i
)MN (0; Q2 
 �""),

Q2 =
�
~	�1uu

�0

�1uu ~	

�1
uu

(iii) when K=n� !1, K=n� ! 0,
p
n=Kn�vec

h
~AIV X (K)�A

i
) N (0; Q3 
 �""),

Q3 = CV
�1
C C�1
uuC�1V

�1
C C if � > 0; Q3 =

�
G�1x0;1

�0
C�1
uuC�1G�1x0;1 if � = 0

(iv) when K=n�_� !1, n1=2+��(�_�)=2vec
h
~AIV X (K)�A

i
) N (0; Q4 
 �""),

Q4 = 2V �1C if � < �; Q4 = 2CV �1C C�1VCzC
�1V �1C C if 0 < � < �; if � = 0 Q4 =

2
�
G�1x0;1

�0
C�1VCzC

�1G�1x0;1:

When � = 0 and K is �xed:

(va)
p
nvec

h
~AIV X (K)�A

i
) N (0; Q5 
 �"") under INNOV(i),

Q5 =
�
G�1x0;K

�0PK�1
i;j=0 �x0 (i� j)G

�1
x0;K

(vb)
p
nvec

h
~AIV X (K)�A

i
) N

�
0;
�
G�10x0;K


 Im
�
W0;K

�
G�1x0;K 
 Im

��
under INNOV(ii),

W0;K =
PK�1
i;j=0E

�
x0;ix

0
0;j 
 "K"0K

�
where VC , VCz and ~	uu are de�ned in Theorem A, �x0 (j) = E

�
x0;tx

0
0;t�j

�
is the autocovariance

function of the process x0;t de�ned in Theorem A, and Gx0;K =
PK�1
j=0 �x0 (j).

The proof of Theorem B requires the development of a new limit theory for sample moments

arising from long-horizon predictive regressions and joint control of the asymptotic growth rates

for n�, n� and K. The details of this asymptotic development are lengthy and highly non-trivial

and can be found in Kostakis, Magdalinos and Stamatogiannis (2014).
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Table 1 

Finite−sample sizes when there is no autocorrelation ( 0  ) in the residuals of the autoregression 

This table presents finite−sample sizes, testing the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (22) when there is no autocorrelation in the residuals of the 

autoregressive equation, i.e.,  0 in (24). W0.05 corresponds to the rejection rate for the Wald statistic, defined in (19), with 5% nominal size, Q0.05 corresponds to the rejection rate 

resulting from the 95% confidence interval for the Campbell and Yogo (2006) Q-test and JM0.05 corresponds to the rejection rate for the *

0.05  statistic of Jansson and Moreira (2006). 

Results are reported for different degrees of correlation between the residuals of regressions (22) and (23),  −0.95, −0.5, 0, 0.5 and 0.95, different sample sizes n= 100, 250, 500 

and 1,000 and for different local-to-unity parameters C= 0, −5, −10, −15, −20 and −50, which in each sample size case correspond to different autoregressive roots (Rn) reported in the 

third column. The reported results are based on the Monte Carlo simulation described in Section 2.1 and the average rejection rates are calculated over 10,000 repetitions. 

   0.95    0.50    0   0.50   0.95   

n C Rn W0.05 Q0.05 JM0.05 W0.05 Q0.05 JM0.05 W0.05 Q0.05 JM0.05 W0.05 Q0.05 JM0.05 W0.05 Q0.05 JM0.05 

100 0 1.000 0.067 0.055 0.048 0.064 0.044 0.062 0.051 0.050 0.436 0.063 0.042 0.060 0.063 0.054 0.058 

 −5 0.950 0.072 0.061 0.046 0.060 0.039 0.046 0.055 0.050 0.192 0.057 0.037 0.052 0.070 0.062 0.044 

 −10 0.900 0.066 0.068 0.030 0.060 0.039 0.032 0.059 0.052 0.170 0.056 0.039 0.040 0.065 0.064 0.028 

 −20 0.800 0.063 0.088 0.066 0.056 0.044 0.068 0.051 0.045 0.144 0.057 0.042 0.068 0.062 0.085 0.070 

 −50 0.500 0.058 0.257 0.150 0.050 0.095 0.058 0.058 0.054 0.148 0.054 0.094 0.048 0.055 0.257 0.148 

250 0 1.000 0.060 0.051 0.062 0.053 0.036 0.054 0.050 0.050 0.510 0.057 0.038 0.042 0.057 0.046 0.052 

 −5 0.980 0.062 0.047 0.036 0.056 0.034 0.048 0.050 0.050 0.208 0.052 0.031 0.038 0.062 0.046 0.028 

 −10 0.960 0.059 0.050 0.042 0.055 0.032 0.052 0.051 0.048 0.158 0.048 0.030 0.036 0.061 0.053 0.042 

 −20 0.920 0.057 0.062 0.040 0.050 0.032 0.036 0.052 0.049 0.128 0.054 0.033 0.038 0.059 0.059 0.034 

 −50 0.800 0.054 0.169 0.318 0.050 0.050 0.038 0.055 0.052 0.116 0.053 0.054 0.040 0.055 0.166 0.342 

500 0 1.000 0.052 0.039 0.042 0.053 0.038 0.046 0.049 0.048 0.582 0.051 0.036 0.072 0.059 0.043 0.048 

 −5 0.990 0.062 0.049 0.036 0.051 0.030 0.038 0.051 0.048 0.258 0.052 0.032 0.040 0.064 0.050 0.040 

 −10 0.980 0.057 0.044 0.036 0.055 0.031 0.036 0.049 0.049 0.200 0.054 0.033 0.040 0.060 0.047 0.032 

 −20 0.960 0.055 0.049 0.050 0.054 0.029 0.042 0.051 0.051 0.178 0.049 0.028 0.048 0.056 0.049 0.054 

 −50 0.900 0.052 0.113 0.524 0.052 0.037 0.054 0.048 0.045 0.176 0.051 0.037 0.054 0.054 0.114 0.488 

1000 0 1.000 0.055 0.042 0.038 0.047 0.034 0.038 0.051 0.049 0.646 0.052 0.035 0.032 0.056 0.042 0.046 

 −5 0.995 0.059 0.047 0.040 0.051 0.030 0.046 0.052 0.051 0.334 0.055 0.031 0.034 0.061 0.048 0.042 

 −10 0.990 0.059 0.046 0.038 0.052 0.030 0.050 0.051 0.048 0.270 0.054 0.032 0.050 0.055 0.046 0.046 

 −20 0.980 0.058 0.047 0.042 0.057 0.031 0.034 0.049 0.047 0.222 0.053 0.029 0.040 0.060 0.048 0.036 

 −50 0.950 0.052 0.074 0.606 0.050 0.032 0.028 0.049 0.048 0.194 0.049 0.029 0.030 0.056 0.069 0.600 
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Table 2 

Finite−sample sizes with autocorrelation coefficient 0.5   in the residuals of the autoregression 

This table presents finite−sample sizes, testing the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (22) when the autocorrelation coefficient in the residuals of the 

autoregression (23) is  0.5. W0.05 corresponds to the rejection rate for the Wald statistic, defined in (19), with 5% nominal size, Q0.05 corresponds to the rejection rate resulting 

from the 95% confidence interval for the Campbell and Yogo (2006) Q-test and JM0.05 corresponds to the rejection rate for the *

0.05  statistic of Jansson and Moreira (2006). Results 

are reported for different degrees of correlation between the residuals of regressions (22) and (23),  −0.95, −0.5, 0, 0.5 and 0.95, different sample sizes n= 100, 250, 500 and 

1,000 and for different local-to-unity parameters C= 0, −5, −10, −15, −20 and −50, which in each sample size case correspond to different autoregressive roots (Rn) reported in the 

third column. The reported results are based on the Monte Carlo simulation described in Section 2.1 and the average rejection rates are calculated over 10,000 repetitions. 

   0.95    0.50    0   0.50   0.95   

n C Rn W0.05 Q0.05 JM0.05 W0.05 Q0.05 JM0.05 W0.05 Q0.05 JM0.05 W0.05 Q0.05 JM0.05 W0.05 Q0.05 JM0.05 

100 0 1.000 0.072 0.054 0.110 0.066 0.044 0.110 0.050 0.051 0.394 0.061 0.039 0.118 0.073 0.054 0.108 

 −5 0.950 0.072 0.053 0.148 0.063 0.040 0.056 0.053 0.049 0.162 0.062 0.037 0.050 0.073 0.053 0.136 

 −10 0.900 0.068 0.047 0.156 0.060 0.036 0.046 0.054 0.050 0.124 0.061 0.034 0.038 0.071 0.052 0.138 

 −20 0.800 0.063 0.059 0.140 0.055 0.032 0.038 0.056 0.051 0.094 0.056 0.033 0.034 0.061 0.056 0.138 

 −50 0.500 0.053 0.150 0.134 0.051 0.053 0.042 0.055 0.052 0.100 0.056 0.055 0.046 0.055 0.155 0.112 

250 0 1.000 0.064 0.044 0.122 0.055 0.033 0.088 0.051 0.052 0.420 0.054 0.033 0.070 0.060 0.044 0.114 

 −5 0.980 0.065 0.046 0.124 0.059 0.033 0.054 0.051 0.048 0.158 0.057 0.034 0.052 0.067 0.045 0.134 

 −10 0.960 0.066 0.046 0.118 0.057 0.035 0.044 0.055 0.050 0.108 0.058 0.032 0.038 0.062 0.043 0.116 

 −20 0.920 0.054 0.046 0.112 0.056 0.033 0.036 0.049 0.047 0.078 0.058 0.034 0.030 0.056 0.047 0.122 

 −50 0.800 0.054 0.150 0.094 0.051 0.044 0.040 0.051 0.048 0.102 0.054 0.046 0.048 0.057 0.144 0.112 

500 0 1.000 0.055 0.043 0.070 0.053 0.036 0.052 0.047 0.049 0.410 0.050 0.034 0.072 0.056 0.043 0.088 

 −5 0.990 0.064 0.044 0.104 0.056 0.033 0.052 0.052 0.048 0.202 0.056 0.033 0.052 0.062 0.049 0.108 

 −10 0.980 0.061 0.044 0.082 0.053 0.032 0.026 0.047 0.044 0.152 0.053 0.030 0.036 0.061 0.044 0.074 

 −20 0.960 0.055 0.043 0.114 0.050 0.029 0.040 0.050 0.046 0.136 0.052 0.033 0.042 0.058 0.045 0.102 

 −50 0.900 0.051 0.097 0.112 0.049 0.034 0.060 0.056 0.053 0.136 0.050 0.033 0.058 0.057 0.098 0.120 

1000 0 1.000 0.054 0.039 0.066 0.056 0.034 0.044 0.052 0.053 0.468 0.054 0.033 0.044 0.061 0.044 0.096 

 −5 0.995 0.065 0.049 0.088 0.057 0.035 0.060 0.053 0.053 0.216 0.054 0.030 0.060 0.063 0.046 0.112 

 −10 0.990 0.060 0.047 0.096 0.055 0.031 0.062 0.047 0.045 0.146 0.052 0.032 0.054 0.060 0.046 0.106 

 −20 0.980 0.061 0.045 0.100 0.053 0.030 0.040 0.051 0.047 0.124 0.051 0.028 0.042 0.064 0.050 0.104 

 −50 0.950 0.052 0.064 0.124 0.052 0.027 0.036 0.053 0.051 0.116 0.053 0.028 0.034 0.053 0.064 0.110 
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Table 3 

Finite−sample sizes for multivariate predictive systems 
This table presents finite−sample sizes for four Wald tests, with nominal size 5%, based on the multivariate 

predictive system in (26) with three regressors exhibiting different degrees of persistence (unit root, local-to-unity 

and stationary), as described in the Monte Carlo simulation in Section 2.4. 
jointW  reports the rejection rate for the 

joint Wald test, defined in (19), under the null hypothesis 
0 1 3: 0 xH A  , i.e., that all three coefficients in vector A 

are equal to zero. 
URW  reports the corresponding rejection rate for the individual significance of the unit root 

regressor coefficient, i.e., under the null hypothesis 
0 1: 0H A  . LTUW  reports the rejection rate for the individual 

significance of the local-to-unity regressor coefficient, i.e., under the null hypothesis 
0 2: 0H A  , while 

StationaryW  reports the rejection rate for the individual significance of the stationary regressor coefficient, i.e., under 

the null hypothesis 
0 3: 0H A  . Results are reported for (i) two sets of correlations (δ's) between the residuals of 

regressions (26) and (27), as estimated using S&P 500 value-weighted log excess return (regressand), earnings-

price ratio (UR), T-bill rate (LTU) and inflation rate (Stationary) with monthly (Correlation Set 1) and quarterly 

(Correlation Set 2) data for the period 1927−2012, (ii) four sets of autocorrelation coefficients in the residuals of 

autoregressions in (27):  =0, 0.25, 0.5 and the corresponding sample estimates for each of the three regressors 

mentioned above and (iii) different sample sizes: n=250, 500 and 1,000. The average rejection rates are calculated 

over 10,000 repetitions. 

 

Correlation Set 1 n jointW  
URW  LTUW  StationaryW  

1 2 3 0      

250 0.052 0.078 0.065 0.057 

500 0.051 0.076 0.060 0.057 

1000 0.047 0.077 0.065 0.054 

1 2 3 0.25      

250 0.070 0.076 0.065 0.055 

500 0.064 0.080 0.062 0.053 

1000 0.063 0.075 0.067 0.049 

1 2 3 0.5      

250 0.058 0.082 0.067 0.053 

500 0.053 0.079 0.069 0.053 

1000 0.049 0.080 0.059 0.052 

1  0.28 250 0.070 0.084 0.065 0.055 

2  0.32 500 0.064 0.080 0.069 0.052 

3  −0.14 1000 0.067 0.079 0.062 0.053 

Correlation Set 2 n jointW  
1W  2W  3W  

1 2 3 0      

250 0.058 0.054 0.058 0.056 

500 0.048 0.053 0.059 0.050 

1000 0.051 0.054 0.054 0.054 

1 2 3 0.25      

250 0.057 0.054 0.053 0.058 

500 0.052 0.055 0.050 0.055 

1000 0.056 0.050 0.053 0.051 

1 2 3 0.5      

250 0.054 0.058 0.057 0.054 

500 0.049 0.058 0.059 0.047 

1000 0.052 0.053 0.054 0.052 

1  0.22 250 0.058 0.053 0.060 0.052 

2  −0.1 500 0.053 0.053 0.052 0.051 

3  −0.08 1000 0.052 0.052 0.049 0.053 
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Table 4 

Unit root tests for predictive regressors−Monthly data 
This table presents the results of unit root tests for the following list of financial and economic variables defined in 

Section 3: Dividend payout ratio (d/e), long-term yield (lty), dividend yield (d/y), dividend price ratio (d/p), T-bill 

rate (tbl), earnings price ratio (e/p), book-to-market value ratio (b/m), default yield spread (dfy), net equity 

expansion (ntis), term spread (tms) and inflation rate (inf). ˆ
nR  corresponds to the least squares point estimate of the 

AR(1): 
1t n t tx R x u  . ADF stands for the augmented Dickey-Fuller test statistic, DF-GLS refers to the Elliot et 

al. (1996) Dickey-Fuller-GLS test statistic, PP stands for the Phillips-Perron test statistic and KPSS refers to the 

Kwiatkowski et al. (1992) test statistic. The Bayesian Information Criterion has been been used to select the 

optimal lag length for ADF and DF-GLS test statistics. The sample period is January 1927−December 2012. *, ** 

and *** imply rejection of the null hypothesis of a unit root (for ADF, DF-GLS and PP) or stationarity (for KPSS) 

at 10%, 5% and 1% level respectively. 

 

 ˆ
nR  ADF DF-GLS PP KPSS 

Dividend payout ratio 0.999 −5.758*** −5.712*** −4.184*** 1.701*** 

Long-term yield 0.999 −1.286 −1.181 −1.314 1.853*** 

Dividend yield 1.000 −2.179 −1.448 −2.087 2.502*** 

Dividend-price ratio 1.000 −2.180 −1.468 −2.149 2.505*** 

T-bill rate 0.997 −2.238 −2.237** −2.131 1.313*** 

Earnings-price ratio 1.000 −3.870*** −3.014*** −3.656*** 1.026*** 

Book-to-market value ratio 0.997 −3.108** −2.754*** −2.989** 1.384*** 

Default yield spread 0.993 −3.430** −3.364*** −3.779*** 0.546** 

Net equity expansion 0.981 −4.371*** −1.247 −4.592*** 1.008*** 

Term spread 0.985 −5.112*** −3.727*** −4.697*** 0.535** 

Inflation rate 0.633 −9.161*** −5.257*** −20.531*** 0.617** 
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Table 5 

Unit root tests for predictive regressors−Quarterly data 
This table presents the results of unit root tests for the following list of financial and economic variables defined 

in Section 3: Dividend payout ratio (d/e), long-term yield (lty), dividend yield (d/y), dividend price ratio (d/p), 

T-bill rate (tbl), earnings price ratio (e/p), book-to-market value ratio (b/m), default yield spread (dfy), net 

equity expansion (ntis), term spread (tms), inflation rate (inf) and consumption-wealth ratio (cay). ˆ
nR  

corresponds to the least squares point estimate of the AR(1): 
1t n t tx R x u  . ADF stands for the augmented 

Dickey-Fuller test statistic, DF-GLS refers to the Elliot et al. (1996) Dickey-Fuller-GLS test statistic, PP stands 

for the Phillips-Perron test statistic and KPSS refers to the Kwiatkowski et al. (1992) test statistic. The Bayesian 

Information Criterion has been used to select the optimal lag length for ADF and DF-GLS test statistics. The 

sample period is 1927Q1−2012Q4, with the exception of cay, which becomes available at quarterly frequency 

after 1952. *, ** and *** imply rejection of the null hypothesis of a unit root (for ADF, DF-GLS and PP) or 

stationarity (for KPSS) at 10%, 5% and 1% level respectively. 

 

 ˆ
nR  ADF DF-GLS PP KPSS 

Dividend payout ratio 0.985 −4.019*** −3.995*** −3.938*** 1.288*** 

Long-term yield 0.997 −1.428 −1.318 −1.213 1.023*** 

Dividend yield 1.000 −2.159 −1.560 −2.096 1.439*** 

Dividend-price ratio 1.000 −2.224 −1.619* −2.284 1.453*** 

T-bill rate 0.983 −2.141 −2.145** −2.333 0.765*** 

Earnings-price ratio 0.999 −4.274*** −2.462** −3.424** 0.665** 

Book-to-market value ratio 0.989 −3.500*** −3.114*** −3.262** 0.800*** 

Default yield spread 0.971 −3.241** −3.186*** −4.055*** 0.357* 

Net equity expansion 0.939 −4.182*** −1.057 −4.654*** 0.752*** 

Term spread 0.944 −4.536*** −2.923*** −5.333*** 0.418* 

Inflation rate 0.627 −4.364*** −4.366*** −12.360*** 0.425* 

Consumption-wealth ratio 0.951 −2.408 −2.201** −2.431 0.232 
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Table 6 

Univariate predictive regressions−Monthly data 
This table presents the results of univariate predictive regression models, as in equation (1), during the sample periods 

January 1927−December 2012 (Panel A) and January 1952−December 2012 (Panel B). The dependent variable is the 

monthly S&P 500 value-weighted log excess return and the lagged persistent regressor is each of the following 

variables defined in Section 3: Dividend payout ratio (d/e), long-term yield (lty), dividend yield (d/y), dividend price 

ratio (d/p), T-bill rate (tbl), earnings price ratio (e/p), book-to-market value ratio (b/m), default yield spread (dfy), net 

equity expansion (ntis), term spread (tms) and inflation rate (inf). 
OLSA stands for the least squares slope coefficient 

estimated via regression model (1), while 
OLSt  is the corresponding t-statistic under the null hypothesis that A  is 

equal to zero (i.e., no predictability).
IVXA , defined in (17), stands for the slope coefficient for the predictive regression 

(16) estimated via the proposed instrumental variable (IVX) approach, while IVX-Wald refers to the Wald statistic, 

defined in equation (19), under the null hypothesis that the slope coefficient A  is equal to zero.   denotes the 

correlation coefficient between the residuals of regression models (1) and (2). *, ** and *** imply rejection of the null 

hypothesis at 10%, 5% and 1% level respectively. CY 90% CI stands for the 90% Bonferroni confidence interval for 

the bias-corrected scaled least squares slope coefficient of the predictive regression using the Q-test of Campbell and 

Yogo (2006). Bold fonts indicate rejection of the null hypothesis of no predictability at the 10% level. JM reports the 

p-value for the 
*

0.05  statistic of Jansson and Moreira (2006) under the null hypothesis of no predictability. 

 

Regressors OLSA  
OLSt  IVXA  IVX−Wald   CY 90% CI JM 

Panel A: January 1927−December 2012 

Dividend payout ratio −0.0024 −0.46 −0.0033 0.393 −0.067 −0.006 0.003 0.19 

Long-term yield −0.0622 −1.01 −0.0665 1.064 −0.108 −0.007 0.002 0.38 

Dividend yield 0.0075 1.97** 0.0081 3.129* −0.079 0.001 0.014 0.06* 

Dividend-price ratio 0.0062 1.63 0.0065 2.031 −0.975 −0.004 0.008 0.32 

T-bill rate −0.0784 −1.40 −0.0761 1.770 −0.062 −0.011 0.001 0.03** 

Earnings-price ratio 0.0087 2.13** 0.0088 4.402** −0.759 −0.003 0.015 0.34 

Book-to-market value ratio 0.0148 2.28** 0.0134 4.101** −0.823 0.001 0.021 0.12 

Default yield spread 0.1100 0.45 0.0591 0.058 −0.274 −0.009 0.015 0.03** 

Net equity expansion −0.1355 −1.93* −0.1720 4.150** −0.031 −0.026 −0.003 0.01*** 

Term spread 0.1482 1.13 0.1399 1.095 −0.005 −0.004 0.024 0.15 

Inflation rate −0.3500 −1.07 −0.3555 1.148 0.023 −0.064 0.021 0.35 

Panel B: January 1952−December 2012 

Dividend payout ratio 0.0049 0.93 0.0044 0.672 −0.091 −0.003 0.009 0.31 

Long-term yield −0.0725 −1.23 −0.0777 1.396 −0.148 −0.012 0.002 0.16 

Dividend yield 0.0075 1.95* 0.0081 1.425 −0.058 0.001 0.014 0.04** 

Dividend-price ratio 0.0069 1.79* 0.0072 1.142 −0.986 −0.006 0.005 0.43 

T-bill rate −0.1057 −2.01** −0.1054 3.537* −0.126 −0.018 −0.002 0.27 

Earnings-price ratio 0.0038 1.04 0.0029 0.588 −0.610 −0.011 0.006 0.46 

Book-to-market value ratio 0.0043 0.68 0.0029 0.174 −0.747 −0.007 0.008 0.27 

Default yield spread 0.2275 0.65 0.2306 0.389 −0.056 −0.009 0.019 0.46 

Net equity expansion −0.0259 −0.30 −0.0417 0.220 −0.063 −0.016 0.010 0.28 

Term spread 0.2071 1.88* 0.2176 3.808* 0.034 0.002 0.038 0.03** 

Inflation rate −1.0501 −2.31** −1.1057 5.922** −0.069 −0.130 −0.031 0.15 
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Table 7  

Univariate predictive regressions−Quarterly data 
This table presents the results of univariate predictive regression models, as in equation (1), during the sample period 

1927Q1−2012Q4 (Panel A) and 1952Q1−2012Q4 (Panel B). The dependent variable is the quarterly S&P 500 value-

weighted log excess return and the lagged persistent regressor is each of the following variables defined in Section 3: 

Dividend payout ratio (d/e), long-term yield (lty), dividend yield (d/y), dividend price ratio (d/p), T-bill rate (tbl), 

earnings price ratio (e/p), book-to-market value ratio (b/m), default yield spread (dfy), net equity expansion (ntis), term 

spread (tms), inflation rate (inf) and consumption-wealth ratio (cay). 
OLSA stands for the least squares slope coefficient 

estimated via regression model (1), while 
OLSt  is the corresponding t-statistic under the null hypothesis that A  is equal 

to zero (i.e., no predictability). 
IVXA , defined in (17), stands for the slope coefficient for the predictive regression (16) 

estimated via the proposed instrumental variable (IVX) approach, while IVX-Wald refers to the Wald statistic, defined in 

equation (19), under the null hypothesis that the slope coefficient A  is equal to zero.   denotes the correlation coefficient 

between the residuals of regression models (1) and (2). *, ** and *** imply rejection of the null hypothesis at 10%, 5% 

and 1% level respectively. CY 90% CI stands for the 90% Bonferroni confidence interval for the bias-corrected scaled 

least squares slope coefficient of the predictive regression using the Q-test of Campbell and Yogo (2006). Bold fonts 

indicate rejection of the null hypothesis of no predictability at the 10% level. JM reports the p-value for the 
*

0.05  statistic 

of Jansson and Moreira (2006) under the null hypothesis of no predictability. 

 

Regressors OLSA  
OLSt  IVXA  IVX−Wald   CY 90% CI JM 

Panel A: 1927Q1−2012Q4         

Dividend payout ratio −0.0031 −0.18 −0.0053 0.095 −0.138 −0.037 0.020 0.22 

Long-term yield −0.1621 −0.78 −0.1705 0.629 −0.071 −0.022 0.008 0.34 

Dividend yield 0.0216 1.69* 0.0232 2.638 0.045 0.001 0.044 0.03** 

Dividend-price ratio 0.0230 1.83* 0.0249 2.952* −0.943 −0.010 0.033 0.35 

T-bill rate −0.2110 −1.13 −0.2032 1.129 −0.029 −0.039 0.008 0.07* 

Earnings-price ratio 0.0284 2.10** 0.0289 4.439** −0.556 −0.002 0.072 0.31 

Book-to-market value ratio 0.0610 2.82*** 0.0565 6.553** −0.832 −0.001 0.062 0.10* 

Default yield spread 0.6472 0.80 0.5041 0.390 −0.515 −0.026 0.064 0.01** 

Net equity expansion −0.6054 −2.60*** −0.7683 6.596** 0.137 −0.090 −0.022 0.04** 

Term spread 0.4245 0.97 0.4007 0.796 −0.005 −0.016 0.076 0.17 

Inflation rate −0.1980 −0.45 −0.1954 0.198 0.033 −0.084 0.061 0.43 

Panel B: 1952Q1−2012Q4         

Dividend payout ratio 0.0189 1.13 0.0177 1.097 −0.190 −0.024 0.057 0.50 

Long-term yield −0.1792 −0.93 −0.1881 0.782 −0.095 −0.035 0.009 0.14 

Dividend yield 0.0272 2.17** 0.0307 2.235 −0.095 0.004 0.046 0.03** 

Dividend-price ratio 0.0237 1.88* 0.0257 1.525 −0.967 −0.016 0.019 0.44 

T-bill rate −0.2835 −1.65* −0.2806 2.362 −0.073 −0.067 0.001 0.24 

Earnings-price ratio 0.0112 0.95 0.0088 0.518 −0.334 −0.028 0.044 0.49 

Book-to-market value ratio 0.0200 0.97 0.0171 0.546 −0.793 −0.020 0.028 0.31 

Default yield spread 0.6762 0.60 0.6910 0.329 −0.174 −0.041 0.065 0.49 

Net equity expansion −0.0319 −0.11 −0.0718 0.060 −0.034 −0.043 0.344 0.43 

Term spread 0.6047 1.68* 0.6349 3.057* 0.040 0.001 0.119 0.05** 

Inflation rate −0.7879 −1.38 −0.8793 2.356 −0.128 −0.193 −0.026 0.15 

Consumption-wealth ratio 0.8480 3.38*** 0.8746 11.351*** −0.429 0.032 0.110 0.02** 
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Table 8 

Predictive regressions with multiple regressors−Monthly data 
This table presents the results of predictive regression models with multiple regressors, as in equation (1), during the sample periods January 1927−December 2012 (Panel 

A) and January 1952−December 2012 (Panel B). In each case, the dependent variable is the monthly S&P 500 value-weighted log excess return and the lagged regressors are 

combinations of the following variables defined in Section 3: Dividend price ratio (d/p), earnings price ratio (e/p), book-to-market value ratio (b/m), dividend payout ratio 

(d/e), T-bill rate (tbl), default yield spread (dfy) and term spread (tms). 
IVXA , defined in (17), is the vector containing the slope coefficients with respect to each of the 

employed variables for the predictive regression (16), estimated via the instrumental variable (IVX) approach. The significance of each individual coefficient is evaluated 

using the Wald statistic, defined in equation (19), under the null hypothesis that the corresponding coefficient is equal to zero. Joint Wald refers to the same Wald statistic, 

under the null hypothesis that all coefficients A are jointly equal to zero. *, ** and *** imply rejection of the null hypothesis at 10%, 5% and 1% level respectively. 

 

Panel A: January 1927−December 2012       

d/p  e/p b/m d/e tbl dfy tms Joint Wald Related study/ Model 

0.0061 ... ... ... −0.0807 ... ... 3.644 Ang and Bekaert (2007) 

0.0077 ... ... ... −0.0647 −0.1871 0.0996 4.742 Ferson and Schadt (1996) 

−0.0010 ... 0.0150 ... ... ... ... 4.117 Kothari and Shanken (1997) 

0.0091* ... ... −0.0082 ... ... ... 3.655 Lamont (1998) 

... 0.0082 0.0053 ... ... ... 0.1992 7.321* Campbell and Vuolteenaho (2004) 

... 0.0112** ... ... −0.1275** ... ... 8.748** General-to-specific approach 

Panel B: January 1952−December 2012       

d/p  e/p b/m d/e tbl dfy tms Joint Wald Related study/ Model 

0.0150 ... ... ... −0.2314** ... ... 4.132 Ang and Bekaert (2007) 

0.0130 ... ... ... −0.2044 0.2252 0.0607 7.653 Ferson and Schadt (1996) 

0.0237 ... −0.0290 ... ... ... ... 2.085 Kothari and Shanken (1997) 

0.0067 ... ... 0.0025 ... ... ... 1.326 Lamont (1998) 

... 0.0060 −0.0014 ... ... ... 0.2633** 5.420 Campbell and Vuolteenaho (2004) 

... 0.0108** ... ... −0.2113*** ... ... 8.160** General-to-specific approach 
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Table 9 

Predictive regressions with multiple regressors−Quarterly data 
This table presents the results of predictive regression models with multiple regressors, as in equation (1), during the sample periods 1927Q1−2012Q4 (Panel A) and 

1952Q1−2012Q4 (Panel B). In each case, the dependent variable is the quarterly S&P 500 value-weighted log excess return and the lagged persistent regressors are 

combinations of the following variables defined in Section 3: Dividend price ratio (d/p), earnings price ratio (e/p), book-to-market value ratio (b/m), dividend payout ratio 

(d/e), T-bill rate (tbl), default yield spread (dfy), term spread (tms), consumption-wealth ratio (cay) and net equity expansion (ntis). 
IVXA , defined in (17), is the vector 

containing the slope coefficients with respect to each of the employed variables for the predictive regression (16), estimated via the instrumental variable (IVX) approach. 

Joint Wald refers to the Wald statistic, defined in equation (19), under the null hypothesis that all coefficients A are jointly equal to zero. *, ** and *** imply rejection of the 

null hypothesis at 10%, 5% and 1% level respectively. 

 

Panel A: 1927Q1−2012Q4        

d/p  e/p b/m d/e tbl dfy tms ntis Joint Wald Related study/ Model 

0.0240* ... ... ... −0.2190 ... ... ... 3.971 Ang and Bekaert (2007) 

0.0267 ... ... ... −0.1731 −0.2871 0.2476 ... 4.557 Ferson and Schadt (1996) 

−0.0137 ... 0.0770 ... ... ... ... ... 6.576** Kothari and Shanken (1997) 

0.0321** ... ... −0.0222 ... ... ... ... 4.023 Lamont (1998) 

... 0.0160 0.0413 ... ... ... 0.5046 ... 8.391** Campbell and Vuolteenaho (2004) 

... 0.0361** ... ... −0.3755* ... ... −0.6152* 13.469*** General-to-specific approach 

Panel B: 1952Q1−2012Q4        

d/p  e/p b/m d/e tbl dfy tms cay Joint Wald Related study/ Model 

0.0483 ... ... ... −0.6828* ... ... ... 3.745 Ang and Bekaert (2007) 

0.0434 ... ... ... −0.5884 0.5073 0.2380 ... 6.880 Ferson and Schadt (1996) 

0.0706 ... −0.0783 ... ... ... ... ... 1.883 Kothari and Shanken (1997) 

0.0235 ... ... 0.0114 ... ... ... ... 1.954 Lamont (1998) 

... 0.0089 0.0161 ... ... ... 0.7553** ... 4.574 Campbell and Vuolteenaho (2004) 

0.0230 ... ... −0.0006 ... ... ... 0.7333** 13.199*** Lettau and Ludvigson (2001) 

... 0.0390** ... ... −0.7339*** 2.4016** ... 0.9749*** 23.985*** General-to-specific approach 
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Table 10 

Finite−sample sizes for long−horizon Wald test 

This table presents finite−sample sizes, derived from K−horizon univariate predictive regressions, as in equation (30), under the null hypothesis 
0 : 0H A   in the DGP (22). 

W0.05 corresponds to the rejection rate for the long-horizon Wald statistic, defined in (34), with 5% nominal size. Results are reported for different degrees of correlation between 

the residuals of regressions (22) and (23),  −0.95, −0.5 and 0, different sample sizes n= 100, 500 and 1,000, different horizons K that are empirically relevant to the 

corresponding sample size n and different local-to-unity parameters C= 0, −5, −10, −20 and −50. The reported results are based on the Monte Carlo simulation described in 

Section 5.2 and the average rejection rates are calculated over 10,000 repetitions. 

 

n=100 n=500 n=1000 

  δ=−0.95 δ=−0.5 δ=0   δ=−0.95 δ=−0.5 δ=0   δ=−0.95 δ=−0.5 δ=0 

C K W0.05 W0.05 W0.05 C K W0.05 W0.05 W0.05 C K W0.05 W0.05 W0.05 

0 2 0.067 0.060 0.051 0 4 0.060 0.054 0.050 0 4 0.056 0.055 0.051 

 3 0.062 0.062 0.050  8 0.055 0.050 0.051  12 0.053 0.051 0.049 

 4 0.059 0.057 0.048  12 0.053 0.050 0.045  36 0.048 0.044 0.048 

 5 0.057 0.055 0.047  20 0.050 0.049 0.047  60 0.044 0.042 0.049 

−5 2 0.067 0.060 0.053 −5 4 0.060 0.059 0.050 −5 4 0.059 0.056 0.050 

 3 0.064 0.060 0.052  8 0.063 0.053 0.053  12 0.060 0.052 0.047 

 4 0.062 0.050 0.048  12 0.060 0.052 0.053  36 0.052 0.053 0.045 

 5 0.059 0.050 0.048  20 0.057 0.049 0.044  60 0.047 0.043 0.047 

−10 2 0.061 0.062 0.050 −10 4 0.059 0.052 0.050 −10 4 0.061 0.049 0.047 

 3 0.066 0.057 0.049  8 0.056 0.056 0.050  12 0.054 0.055 0.052 

 4 0.059 0.051 0.054  12 0.058 0.054 0.049  36 0.053 0.052 0.048 

 5 0.058 0.052 0.047  20 0.053 0.048 0.049  60 0.049 0.044 0.047 

−20 2 0.058 0.057 0.055 −20 4 0.057 0.056 0.050 −20 4 0.054 0.051 0.047 

 3 0.057 0.052 0.049  8 0.056 0.051 0.050  12 0.057 0.051 0.048 

 4 0.063 0.054 0.049  12 0.054 0.052 0.046  36 0.050 0.050 0.048 

 5 0.055 0.052 0.052  20 0.054 0.047 0.046  60 0.052 0.049 0.043 

−50 2 0.050 0.053 0.059 −50 4 0.052 0.050 0.050 −50 4 0.052 0.052 0.051 

 3 0.051 0.055 0.051  8 0.050 0.051 0.050  12 0.048 0.052 0.051 

 4 0.050 0.053 0.051  12 0.049 0.048 0.052  36 0.052 0.053 0.047 

 5 0.051 0.051 0.053  20 0.051 0.050 0.049  60 0.053 0.050 0.046 
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Table 11 

Long−horizon univariate predictive regressions−Monthly data 
This table presents the results of long-horizon univariate predictive regression models, as in equation (30), during the sample periods January 1927−December 2012 (Panel 

A) and January 1952−December 2012 (Panel B), for various horizons (K-mths). The dependent variable is the cumulative S&P 500 value-weighted log excess return from 

month t to month t+K-1, corresponding to a horizon of K months, and the lagged persistent regressor is each of the following variables defined in Section 3: Dividend payout 

ratio (d/e), long-term yield (lty), dividend yield (d/y), dividend price ratio (d/p), T-bill rate (tbl), earnings price ratio (e/p), book-to-market value ratio (b/m), default yield 

spread (dfy), net equity expansion (ntis), term spread (tms) and inflation rate (inf). The table reports the long-horizon Wald statistic, defined in equation (34), under the null 

hypothesis that the slope coefficient of the long-horizon univariate predictive regression estimated via the proposed instrumental variable (IVX) approach, is equal to zero 

(i.e., no predictability). *, ** and *** imply rejection of the null hypothesis at 10%, 5% and 1% level respectively. 

 

Panel A: January 1927−December 2012 

K-mths d/e lty d/y d/p tbl e/p b/m dfy ntis tms inf 

4 0.138 0.752 2.322 2.271 1.413 3.978** 4.851** 0.054 4.805** 1.125 0.781 

12 0.005 0.195 3.492* 3.230* 0.947 4.538** 5.767** 0.124 9.123*** 2.156 0.528 

24 0.472 0.061 3.772* 3.782* 0.774 3.335* 4.501** 0.141 8.784*** 3.080* 0.022 

36 0.803 0.039 3.415* 3.452* 0.918 2.806* 3.866** 0.105 6.816*** 5.025** 0.001 

48 0.422 0.021 3.150* 3.234* 0.668 3.418* 3.788* 0.222 4.960** 4.642** 0.053 

60 0.637 0.024 2.912* 3.018* 0.525 3.044* 2.970* 0.232 4.309** 4.022** 0.057 

Panel B: January 1952−December 2012 

K-mths d/e lty d/y d/p tbl e/p b/m dfy ntis tms inf 

4 1.522 0.821 1.517 1.386 2.483 0.372 0.367 0.866 0.006 3.367* 5.507** 

12 1.717 0.133 1.810 1.763 1.406 0.761 0.642 0.549 0.005 4.422** 8.328*** 

24 4.392** 0.009 1.584 1.639 0.651 0.286 0.241 0.048 0.147 3.494* 3.670* 

36 5.779** 0.000 1.269 1.306 0.449 0.203 0.063 0.014 0.119 3.654* 2.400 

48 3.317* 0.045 0.901 0.932 0.157 0.467 0.050 0.010 0.040 3.388* 2.297 

60 3.856** 0.127 0.883 0.896 0.039 0.541 0.112 0.093 0.001 3.412* 1.311 
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Table 12 

Long−horizon univariate predictive regressions−Quarterly data 
This table presents the results of long-horizon univariate predictive regression models, as in equation (30), during the sample periods 1927Q1−2012Q4 (Panel A) and 

1952Q1−2012Q4 (Panel B), for various horizons (K-qtrs). The dependent variable is the cumulative S&P 500 value-weighted log excess return from quarter t to quarter 

t+K-1, corresponding to a horizon of K quarters, and the lagged persistent regressor is each of the following variables defined in Section 3: Dividend payout ratio (d/e), 

long-term yield (lty), dividend yield (d/y), dividend price ratio (d/p), T-bill rate (tbl), earnings price ratio (e/p), book-to-market value ratio (b/m), default yield spread (dfy), 

net equity expansion (ntis), term spread (tms), inflation rate (inf) and consumption-wealth ratio (cay). The table reports the long-horizon Wald statistic, defined in equation 

(34), under the null hypothesis that the slope coefficient of the long-horizon univariate predictive regression estimated via the proposed instrumental variable (IVX) 

approach, is equal to zero (i.e., no predictability). *, ** and *** imply rejection of the null hypothesis at 10%, 5% and 1% level respectively. 

 

Panel A: 1927Q1−2012Q4 

K-qtrs d/e lty d/y d/p tbl e/p b/m dfy ntis Tms inf  

4 0.000 0.173 3.537* 3.362* 0.746 4.221** 5.750** 0.139 7.672*** 1.564 0.116  

8 0.424 0.047 3.567* 3.648* 0.614 3.010* 4.207** 0.170 6.135** 2.475 0.021  

12 0.703 0.029 3.190* 3.233* 0.697 2.461 3.428* 0.112 4.466** 3.827* 0.036  

16 0.378 0.017 2.771* 2.954* 0.510 2.906* 3.181* 0.201 3.063* 3.496* 0.083  

20 0.527 0.017 2.562 2.744* 0.408 2.623 2.506 0.203 2.419 3.158* 0.061  

Panel B: 1952Q1−2012Q4 

K-qtrs d/e lty d/y d/p tbl e/p b/m dfy ntis Tms inf Cay 

4 1.409 0.132 1.902 1.902 1.201 0.857 0.824 0.391 0.022 3.569* 5.511** 11.022*** 

8 3.516* 0.005 1.524 1.686 0.530 0.361 0.352 0.030 0.088 2.977* 2.585 8.794*** 

12 4.865** 0.000 1.269 1.348 0.353 0.244 0.113 0.003 0.079 2.993* 1.784 7.326*** 

16 2.960* 0.034 0.895 0.961 0.135 0.463 0.062 0.007 0.038 2.809* 1.693 6.048** 

20 3.247* 0.112 0.878 0.911 0.034 0.558 0.126 0.069 0.002 2.974* 0.927 5.000** 

 

 

 



56 
 

Table 13 

Long−horizon predictive regressions with multiple regressors 
This table presents the results of long-horizon predictive regression models with multiple regressors, as in equation (30). Panel A contains the results for monthly data 

and Panel B contains the results for quarterly data. Each panel reports results for the full sample period, 1927−2012, and the subperiod 1952−2012. Results are reported 

for various horizons (K-mths in Panel A and K-qtrs in Panel B). In Panel A, the dependent variable is the cumulative S&P 500 value-weighted log excess return from 

month t to month t+K-1, corresponding to a horizon of K months. In Panel B, the dependent variable is the cumulative S&P 500 value-weighted log excess return from 

quarter t to quarter t+K-1, corresponding to a horizon of K quarters. The lagged persistent regressors are combinations of the following variables: Earnings price ratio 

(e/p), T-bill rate (tbl), default yield spread (dfy), net equity expansion (ntis) and consumption-wealth ratio (cay). The combination of regressors used in each presented 

case is the one derived from the general-to-specific approach for 1-period regressions, as described in Section 4.2 and presented in Tables 8 and 9. The table reports the 

long-horizon Wald statistic, defined in equation (34), testing the individual significance of each regressor, i.e., under the null hypothesis that the corresponding slope 

coefficient of the long-horizon regression estimated via the proposed instrumental variable (IVX) approach, is equal to zero. It also reports the corresponding Joint Wald 

statistic testing the joint significance of the employed regressors, i.e., under the null hypothesis that all slope coefficients of the long-horizon regression are jointly equal 

to zero. *, ** and *** imply rejection of the null hypothesis at 10%, 5% and 1% level respectively. 

 

Panel A: Monthly data 

 Period: January 1927−December 2012 Period: January 1952−December 2012 

K-mths e/p tbl Joint Wald  e/p tbl Joint Wald   

4 5.778** 3.894** 7.638**  3.257* 5.666** 5.734*   

12 6.383** 3.166* 7.614**  4.093** 4.986** 5.289*   

24 4.990** 2.124 5.794*  2.273 2.411 2.596   

36 4.599** 1.915 5.383*  2.049 1.885 2.116   

48 4.983** 1.441 5.660*  2.207 1.702 2.216   

60 4.321** 1.039 4.822*  1.814 1.258 1.825   

Panel B: Quarterly data 

 Period: 1927Q1−2012Q4 Period: 1952Q1−2012Q4 

K-qtrs e/p tbl ntis Joint Wald e/p tbl dfy cay Joint Wald 

4 4.862** 2.922* 4.928** 13.530*** 3.741* 6.114** 4.890** 16.786*** 23.548*** 

8 3.500* 2.157 3.988** 10.393** 2.013 3.662* 1.009 11.809*** 16.118*** 

12 3.791* 2.067 2.421 8.296** 1.477 2.683 0.062 6.733*** 13.292*** 

16 4.150** 1.689 1.175 7.300* 1.380 1.854 0.036 3.852** 11.569** 

20 3.854** 1.383 0.600 6.102 0.859 0.948 0.045 1.604 10.664** 
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Figure 1 

Power plots for sample size n=250 and residuals’ correlation coefficient  −0.95 

This figure shows the rejection rates for tests of the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in 

(22) as the true value of A increases. The solid curve (Wald0.05) illustrates the rejection rate we get using the Wald test, 

defined in equation (19), with 5% nominal size (horizontal line). The dashed curve (CYQ0.05) illustrates the rejection rate 

using the 95% confidence interval of the Campbell and Yogo (2006) Q-test. The dash-dot curve (JM0.05) illustrates the 

rejection rate using the *

0.05  statistic of Jansson and Moreira (2006). Each panel corresponds to a different local-to-unity 

parameter C= 0, −5, −10, −15, −20 and −50. These rejection rates have been calculated using Monte Carlo simulations 

described in Section 2.1 with 10,000 repetitions for a sample size of n=250, correlation coefficient between the residuals 

of regressions (22) and (23)  −0.95 and no autocorrelation in the residuals of the autoregressive equation, i.e.,   0 

in (24). 
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Figure 2 

Power plots for sample size n=250 and residuals’ correlation coefficient  −0.5 

This figure shows the rejection rates for tests of the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in 

(22) as the true value of A increases. The solid curve (Wald0.05) illustrates the rejection rate we get using the Wald test, 

defined in equation (19), with 5% nominal size (horizontal line). The dashed curve (CYQ0.05) illustrates the rejection rate 

using the 95% confidence interval of the Campbell and Yogo (2006) Q-test. The dash-dot curve (JM0.05) illustrates the 

rejection rate using the *

0.05  statistic of Jansson and Moreira (2006). Each panel corresponds to a different local-to-unity 

parameter C= 0, −5, −10, −15, −20 and −50. These rejection rates have been calculated using Monte Carlo simulations 

described in Section 2.1 with 10,000 repetitions for a sample size of n=250, correlation coefficient between the residuals 

of regressions (22) and (23)  −0.5 and no autocorrelation in the residuals of the autoregressive equation, i.e.,   0 in 

(24). 
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Figure 3 

Power plots for sample size n=250 and residuals’ correlation coefficient  0 

This figure shows the rejection rates for tests of the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in 

(22) as the true value of A increases. The solid curve (Wald0.05) illustrates the rejection rate we get using the Wald test, 

defined in equation (19), with 5% nominal size (horizontal line). The dashed curve (CYQ0.05) illustrates the rejection rate 

using the 95% confidence interval of the Campbell and Yogo (2006) Q-test. The dash-dot curve (JM0.05) illustrates the 

rejection rate using the *

0.05  statistic of Jansson and Moreira (2006). Each panel corresponds to a different local-to-unity 

parameter C= 0, −5, −10, −15, −20 and −50. These rejection rates have been calculated using Monte Carlo simulations 

described in Section 2.1 with 10,000 repetitions for a sample size of n=250, correlation coefficient between the residuals 

of regressions (22) and (23)   0 and no autocorrelation in the residuals of the autoregressive equation, i.e.,   0 in 

(24). 
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Figure 4 

Power plots for joint Wald test with multiple regressors (Correlation set 1) 
This figure shows the rejection rates for the joint Wald test defined in (19), with 5% nominal size, under the null 

hypothesis 
0 1 3: 0 xH A  , i.e., that all three coefficients in vector A are equal to zero, as the true value of each regressor 

coefficient Ai increases. The joint Wald test is based on the multivariate predictive system in (26), with three regressors 

exhibiting different degrees of persistence (unit root, local-to-unity and stationary). The solid curve (Wald
UR

) illustrates 

the rejection rate for the joint Wald test as the true value of the unit root regressor coefficient increases. The dashed curve 

(Wald
LTU

) illustrates the corresponding rejection rate as the true value of the local-to-unity regressor coefficient 

increases. The dotted curve (Wald
Stationary

) illustrates the corresponding rejection rate as the true value of the stationary 

regressor coefficient increases. These rejection rates have been calculated using Monte Carlo simulations described in 

Section 2.4 with 10,000 repetitions for different sample sizes: n=100, 250, 500 and 1,000. The correlation coefficients 

(δ's) between the residuals of regressions (26) and (27) are estimated using S&P 500 value-weighted log excess return 

(regressand), earnings-price ratio (UR), T-bill rate (LTU) and inflation rate (Stationary) with monthly data for the period 

1927−2012, i.e., Correlation Set 1. The utilized autocorrelation coefficients (φ's) for the autoregressions are the 

corresponding sample estimates for each of the three regressors mentioned above. 
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Figure 5 

Power plots for joint Wald test with multiple regressors (Correlation set 2) 
This figure shows the rejection rates for the joint Wald test defined in (19), with 5% nominal size, under the null 

hypothesis 
0 1 3: 0 xH A  , i.e., that all three coefficients in vector A are equal to zero, as the true value of each regressor 

coefficient Ai increases. The joint Wald test is based on the multivariate predictive system in (26), with three regressors 

exhibiting different degrees of persistence (unit root, local-to-unity and stationary). The solid curve (Wald
UR

) illustrates 

the rejection rate for the joint Wald test as the true value of the unit root regressor coefficient increases. The dashed curve 

(Wald
LTU

) illustrates the corresponding rejection rate as the true value of the local-to-unity regressor coefficient 

increases. The dotted curve (Wald
Stationary

) illustrates the corresponding rejection rate as the true value of the stationary 

regressor coefficient increases. These rejection rates have been calculated using Monte Carlo simulations described in 

Section 2.4 with 10,000 repetitions for different sample sizes: n=100, 250, 500 and 1,000. The correlation coefficients 

(δ's) between the residuals of regressions (26) and (27) are estimated using S&P 500 value-weighted log excess return 

(regressand), earnings-price ratio (UR), T-bill rate (LTU) and inflation rate (Stationary) with quarterly data for the period 

1927−2012, i.e., Correlation Set 2. The utilized autocorrelation coefficients (φ's) for the autoregressions are the 

corresponding sample estimates for each of the three regressors mentioned above. 

 

 

 

 

 

 

 



Robust Econometric Inference for Stock Return Predictability

Online Appendix

Alexandros Kostakis, Tassos Magdalinos and Michalis P. Stamatogiannis

1. Proofs of Theorem 1 and Theorem A

This section establishes the two main asymptotic results of the paper: the mixed Gaussianity

property of the IVX estimator (Theorem A) and the chi�squared limit distribution of the IVX�

Wald test statistic (Theorem 1) under Assumption INNOV. The proofs employ some useful

auxiliary results that are established independently. In particular, new limit theory for IVX

estimation and inference is established in the presence of conditional heteroskedasticity in the

innovation errors of the general form presented in Assumption INNOV(ii) of the paper.

1.1 Introduction

We consider the system of predictive regressions

yt = �+Axt�1 + "t; (1)

xt = Rnxt�1 + ut; (2)

Rn = Ir +
C

n�
for some � � 0; (3)

with innovations "t, ut satisfying Assumption INNOV and the IVX instrument process ~zt =

Rnz~zt�1 +�xt based on the matrix

Rnz = Ir +
Cz
n�
; � 2 (0; 1) ; Cz < 0 (4)

for given values of � and Cz.

1.2 Auxiliary results

We begin by establishing two auxiliary results that facilitate the proof of Theorem A and The-

orem 1. The �rst result characterizes the asymptotic behavior of the sample mean of the IVX

1



instruments ~zt. We employ the shorthand notation a ^ b = min (a; b) and a _ b = max (a; b)

throughout. For a given matrix M , kMk denotes the spectral norm (the square root of the

maximal eigenvalue of the matrix M 0M) and kMkLp denotes the usual Lp norm of vec(M).

For brevity, we refer to Phillips and Magdalinos (2009) as PM and to Magdalinos and Phillips

(2009) as MP.

Lemma B1. Let � and � be de�ned by (3) and (4) respectively. The following approximations

are valid as n!1:

(i) When 0 < � < �:

n�(
1^�
2
+�)

nX
t=1

~zt�1 = �C�1z n�(1^�)=2xn +Op
�
n�

(1^�)��
2

�
:

(ii) When 0 � � � � < 1:
Pn
t=1 ~zt = Op

�
n�+

�
2

�
:

Proof. By Proposition A2 of PM,

sup
1�t�n

E k ntk2 = O
�
n[(1^�)_�]+2(�^�)

�
for all � � 0; � 2 (0; 1) : (5)

Summing the recursion ~zt = Rnz~zt�1 +�xt over f1; :::; ng yields

xn � x0 =
nX
t=1

~zt �Rnz
nX
t=1

~zt�1 = ~zn + (Ir �Rnz)
nX
t=1

~zt�1

or equivalently, since Rnz � Ir = Cz=n
�,

nX
t=1

~zt�1 = C�1z n� (~zn � xn + x0) : (6)

For part (i), using the decomposition ~zt = zt +
C
n� nt and (5) with � < � we obtain that

~zn = zn +
C

n�
 nn = Op

�
n�=2

�
+Op

�
n�

n�=2

�
= Op

�
n�=2

�

2



since n���=2 = n�=2n�(���)=2 = o
�
n�=2

�
. Therefore, (6) implies that

1

n
�
2
+�

nX
t=1

~zt�1 = �C�1z
1

n�=2
xn +Op

�
n�(���)=2

�

as required. For part (ii), applying the decomposition

~zt = xt �Rtnzx0 +
Cz
n�
 nt (7)

to (6) we obtain

~zn � xn =
Cz
n�
 nn �Rnnzx0 = Op

�
n�

n�=2

�
(8)

since (5) implies that  nn = Op
�
n�+�=2

�
when 0 � � � �. Now part (ii) follows by combining

(6) and (8).

The second auxiliary result characterizes IVX limit theory for stationary regressors. In

accordance to notation of the paper, we denote the undemeaned regression matrices by

Y =
�
y01; :::; y

0
n

�0
; X =

�
x00; :::; x

0
n�1
�0 and E =

�
"01; :::; "

0
n

�0
and the demeaned regression matrices by

Y =
�
y01 � �y0n; :::; y0n � �y0n

�0
;

X =
�
x00 � �x0n�1; :::; x0n�1 � �x0n�1

�0
E =

�
"01 � �"0n; :::; "0n � �"0n

�0
:

Lemma B2. Let xt be a stable-root regressor belonging to the persistence class P(iv) with

C < 0 and � = 0 and let

x0;t =
1X
j=0

Rjut�j ; R = Ir + C (9)

be a stationary version of xt. The following approximations are valid for any � 2 (0; 1) under

Assumption INNOV as n!1:

(i) n�1X 0 ~Z = n�1X 0X + op (1)

(ii) n�1 ~Z 0 ~Z = n�1X 0X + op (1)

3



(iii) n�1X 0X = n�1
Pn
t=1 x0;t�1x

0
0;t�1 + op (1)

(iv) n�1=2E 0 ~Z = n�1=2E 0X + op (1) = n�1=2
Pn
t=1 "tx

0
0;t�1 + op (1) :

Proof. By assumption 0 = � < � < 1, so Lemma B1(ii) implies that
Pn
t=1 ~zt = Op

�
n�=2

�
: For

part (i), applying the decomposition (7) and using the fact that �xn�1 = Op
�
n�1=2

�
we obtain

n�1X 0 ~Z = n�1
nX
t=1

xt�1~z
0
t�1 � �xn�1�z0n�1

=
1

n

nX
t=1

xt�1x
0
t�1 +

1

n1+�

nX
t=1

xt�1 
0
nt�1Cz +Op

�
1

n1��

�
=

1

n
X 0X +Op

�
1

n�=2

�
+Op

�
1

n1��

�

because the Cauchy�Schwarz inequality yields






 1

n1+�

nX
t=1

xt�1 
0
nt�1







L1

� 1

n1+�

nX
t=1

E
�
kxt�1k



 nt�1

�

�

�
E kx1k2

�1=2
n1+�

nX
t=1

�
E


 nt�1

2�1=2

�
�
E kx1k2

�1=2�
sup
1�t�n

E k ntk2
�1=2 1

n�
= O

�
1

n�=2

�

since (5) with � = 0 implies that sup1�t�nE k ntk2 = O
�
n�
�
. For part (ii), (7) implies the

identity

1

n
~Z 0 ~Z =

1

n
X 0X +

1

n1+�

nX
t=1

xt�1 
0
nt�1Cz +

1

n1+�
Cz

nX
t=1

 nt�1x
0
t�1

+
1

n1+2�
Cz

nX
t=1

 nt�1 
0
nt�1Cz +Op

�
1

n1��

�
;

where all terms containing the initial condition x0 are included in the remainder. From part (i),

we know that the second and third terms on the right have order Op
�
n��=2

�
. For the last term

on the right hand side, (5) implies that






 1

n1+2�

nX
t=1

 nt�1 
0
nt�1







L1

� 1

n1+2�

nX
t=1

E


 nt�1

2 = O

�
1

n�

�
;

4



establishing part (ii). For part (iii), (7) again yields

n�1=2E 0 ~Z = n�1=2
nX
t=1

"t~z
0
t�1 � n1=2�"n�z0n�1

= n�1=2
nX
t=1

"tx
0
t�1 +

1

n
1
2
+�

nX
t=1

"t 
0
nt�1Cz +Op

�
1

n
1��
2

�

and the result follows by (5) since the second term on the right is a martingale array satisfying

E






 1

n
1
2
+�

nX
t=1

�
 nt�1 
 "t

�





2

=
E k"1k2

n1+2�

nX
t=1

E


 nt�1

2 � E k"1k2

n2�
sup
t�n

E k ntk2 = O

�
1

n�

�
:

Note that the above approximations employ unconditional moment bounds and hence apply

under both part (i) and part (ii) of Assumption INNOV. To show the second asymptotic equiv-

alence of part (iv), the identity xt�1 = Rt�1x0 +
Pt�1
j=1R

j�1ut�j yields

x0;t�1 � xt�1 =
1X
j=t

Rj�1ut�j �Rt�1x0: (10)

Using (10), we obtain

n�1=2






E 0X �
nX
t=1

"tx
0
0;t�1






 = n�1=2







nX
t=1

"t (x0;t�1 � xt�1)0







� n�1=2
nX
t=1

1X
j=t

kRkj�1 k"tk kut�jk+ n�1=2 kx0k
nX
t=1

kRkt�1 k"tk

= Op

�
n�1=2 kx0k

�

as
Pn
t=1 kRk

t�1 k"1kL1 � k"1kL2
P1
t=0 kRk

t and the �rst term is bounded in L1 norm by

n�1=2 k"1kL2 ku1kL2
nX
t=1

1X
j=t

kRkj�1 � n�1=2 k"1kL2 ku1kL2

0@ 1X
j=0

kRkj
1A2 :

5



To show part (iii), x0;t�1x00;t�1 � xt�1x0t�1 = x0;t�1 (x0;t�1 � xt�1)0 + (x0;t�1 � xt�1)x0t�1 and

(10) yield

n�1






X 0X �
nX
t=1

x0;t�1x
0
0;t�1






 � n�1
nX
t=1

(kx0;t�1k+ kxt�1k) kx0;t�1 � xt�1k

� n�1
nX
t=1

kx0;t�1k kx0;t�1 � xt�1k

+n�1 kx0k
nX
t=1

kx0;t�1 � xt�1k kRkt�1

+n�1
nX
t=1

t�1X
j=1

kRkj�1 kx0;t�1 � xt�1k kut�jk

� n�1
nX
t=1

1X
j=t

kRkj�1 kx0;t�1k kut�jk+ kx0kn�1
nX
t=1

kRkt�1 kx0;t�1k

+n�1 kx0k2
nX
t=1

kRk2(t�1) + n�1 kx0k
nX
t=1

kRkt�1
1X
j=t

kRkj�1 kut�jk

+n�1
nX
t=1

t�1X
j=1

kRkj�1
1X
l=t

kRkl�1 kut�lk kut�jk

+n�1 kx0k
nX
t=1

kRkt�1
t�1X
j=1

kRkj�1 kut�jk = Op

�
n�1 kx0k2

�

using the L2 Cauchy Schwarz inequality and stationarity of x0;t�1. This shows part (iii).

The third auxiliary result shows that the limit theory for IVX sample moments is invariant

to the presence of conditional heteroskedasticity in the innovation sequence.

Lemma B3. Under Assumption INNOV(ii) the sample moments

n�1��
nX
t=1

xt�1x
0
t�1, n

�1��
nX
t=1

zt�1z
0
t�1, n

�1�(�^�)
nX
t=1

xt�1~z
0
t�1, and n

�1�(�^�)
nX
t=1

~zt�1~z
0
t�1

have the same limit distributions as under Assumption INNOV(i) for a regressor xt belonging

to any of the persistence classes P(i)-P(iv).

Proof. First note that Lemma 3.1 (ii), (iii) and Lemma 3.5 (ii) of PM are established us-

ing unconditional moment bounds and continue to hold under conditional heteroskedasticity.
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Therefore the approximations

1

n1+�

nX
t=1

xt�1~z
0
t�1 =

1

n1+�

nX
t=1

xt�1z
0
t�1 �

1

n1+�

nX
t=1

xt�1x
0
t�1CC

�1
z + op (1) ; � < � (11)

1

n1+�

nX
t=1

xt�1~z
0
t�1 =

1

n1+�

nX
t=1

xt�1x
0
t�1 + op (1) ; � < � (12)

1

n1+�

nX
t=1

~zt�1~z
0
t�1 =

1

n1+�

nX
t=1

zt�1z
0
t�1 + op (1) ; � < � (13)

1

n1+�

nX
t=1

~zt�1~z
0
t�1 =

1

n1+�

nX
t=1

xt�1x
0
t�1 + op (1) ; � < � (14)

are valid under Assumption INNOV(ii). We need to derive the limit distributions of sample

moments involving xt separately for each persistence class.

Case 1: xt belongs to class P(iii). In this case xt is near stationary with autoregressive

matrix Rn = Ir + C=n
� � 2 (0; 1) :

For n�1��
Pn
t=1 xt�1x

0
t�1, the identity xt�1 = Rt�1n x0 + �nt�1 with

�nt =
t�1X
j=0

Rjnut�j (15)

and the fact that x0 = op
�
n�=2

�
imply that

1

n1+�

nX
t=1

xt�1x
0
t�1 =

1

n1+�

nX
t=1

�nt�1�
0
nt�1 + op (1) (16)

because n�1��
Pn
t=1



Rt�1n x0�
0
nt�1



 � n�1�� kx0k
Pn
t=1



�nt�1

 = Op
�
n��=2x0

�
= op (1) since

supt�1E


�nt�1

 � supt�1 �E 

�nt�1

2�1=2 = O

�
n�=2

�
. Since �n;n�1 = Op

�
n�=2

�
applying the

argument of MP to the recursion �nt = Rn�nt�1 + ut we obtain

vec

(
1

n1+�

nX
t=1

�nt�1�
0
nt�1

)
= [1 + op (1)] (C 
 I + I 
 C)�1

�vec
(
1

n

nX
t=1

�nt�1u
0
t +

1

n

nX
t=1

ut�
0
nt�1 +

1

n

nX
t=1

utu
0
t

)
: (17)

Under assumption INNOV(ii), strict stationarity and ergodicity of (et)t2Z together with the

7



summability condition
P1
j=0 j kCjk <1 imply that the sequences (ut)t2N and (~et)t2N with

~et =

1X
j=0

~Cjet�j ; ~Cj =

1X
k=j+1

Ck (18)

are also strictly stationary and ergodic (since
P1
j=0 j kCjk < 1 implies

P1
j=0




 ~Cj


 < 1, see

Phillips and Solo (1992)). Since


n�1Pn

t=1 �nt�1u
0
t � n�1

Pn
t=1 ~etu

0
t




L1
! 0 when � 2 (0; 1)

using unconditional moment bounds (see MP), the ergodic theorem (e.g. Theorem 10.6 of

Kallenberg (2002)) implies that the vectorized expression on the right side of (17) converges a:s:

and in L1 to

E~etu
0
t + Eut~e

0
t + Eutu

0
t = �uu + �

0
uu + Eu1u

0
1 = 
uu:

Since (C 
 I + I 
 C)�1vec(
uu) = vec(VC), (17) implies that

1

n1+�

nX
t=1

�nt�1�
0
nt�1 !L1 VC (19)

and the above combined with (16) shows that n�1��
Pn
t=1 xt�1x

0
t�1 !p VC .

Since zt belongs to the class of near-stationary processes P(iii) with autoregressive matrix

Rnz = Ir + Cz=n
� for all persistence regimes, and the limit

n�1��
nX
t=1

xt�1x
0
t�1 !p VC =

Z 1

0
erC
uue

rCdr (20)

is valid for an arbitrary process in the class P(iii) with autoregressive matrix Rn = Ir + C=n�,

the limit

n�1��
nX
t=1

zt�1z
0
t�1 !p VCz =

Z 1

0
erCz
uue

rCzdr (21)

follows immediately from (20).

For n�1�(�^�)
Pn
t=1 xt�1~z

0
t�1 with � < �, equation (17) of PM yields

1

n1+�

nX
t=1

xt�1z
0
t�1 = [Ir + op (1)]

1

n

 
nX
t=1

xt�1u
0
t +

nX
t=1

utz
0
t�1 +

nX
t=1

utu
0
t

!�
�C�1z

�
: (22)

Note that the asymptotic equivalence in (22) is valid for xt belonging to any of the persis-

tence regimes P(i)-P(iii) (the stable root case P(iv) is ruled out because 0 = � < � and

8



hence
Pn
t=1 xt�1z

0
t�1 does not feature in the asymptotics). When � 2 (0; 1), MP show that,

independently of the conditional variance of the primitive innovations et, n�1
Pn
t=1 xt�1u

0
t =

n�1
Pn
t=1 ~etu

0
t + op (1), and n�1

Pn
t=1 utz

0
t�1 = n�1

Pn
t=1 ut~e

0
t + op (1). The ergodic theorem

applied to n�1
Pn
t=1 ~etu

0
t and n

�1Pn
t=1 utu

0
t implies that n

�1��Pn
t=1 xt�1z

0
t�1 !p �
uuC�1z .

Combining this with (11) and (20) delivers the required result when � < �. When � < �, the

result follows by (12) and (20).

For n�1�(�^�)
Pn
t=1 ~zt�1~z

0
t�1 the result follows directly by (13) and (21) when � < � and by

(14) and (20) when � < �.

Case 2: xt belongs to classes P(i)-P(ii). In this case � = 1 and the asymptotic behavior

of n�2
Pn
t=1 xt�1x

0
t�1 and n

�1��Pn
t=1 xt�1z

0
t�1 is driven by a functional central limit theorem

on DRr [0; 1] of the random element

1p
n

bnscX
j=1

uj = C (1)
1p
n

bnscX
j=1

ej + op (1)) B (s) (23)

where B (s) is a Brownian motion with covariance matrix 
uu = C (1)�eeC (1)
0, where the

�rst asymptotic equivalence follows by a standard application of the Phillips and Solo (1992)

BN decomposition approach. The validity of the weak convergence on DRr [0; 1] in (23) under

Assumption INNOV(ii) is guaranteed by the functional central limit theorem for stationary

ergodic martingale di¤erences, e.g. Theorem 18.3 of Billingsley (1968). Since (23) and the

ergodic theorem for n�1
Pn
t=1 ~etu

0
t and n�1

Pn
t=1 utu

0
t continue to apply and yield the same

limits under Assumption INNOV(i) and INNOV(ii), the sample moments of the lemma will

have the same limit distributions.

Case 3: xt belongs to class P(iv). In this case � = 0 and xt is a stable root autoregression

with �xed autoregressive matrix R = Ir + C with kRk < 1. Given the results of Lemma B2

above, the only sample moment of interest in this case is n�1
Pn
t=1 x0;t�1x

0
0;t�1, with x0;t de�ned

in (9). Since
P1
j=0 kRk

j < 1 and (ut)t2Z is strictly stationary and ergodic, x0;t is a strictly

stationary and ergodic process. The ergodic theorem then implies that

n�1
nX
t=1

x0;t�1x
0
0;t�1 !L1 E

�
x0;1x

0
0;1

�
=

1X
i;j=0

Ri�u (i� j)Rj (24)

where �u (k) = E
�
utu

0
t�k
�
and n�1X 0X !p E

�
x0;1x

0
0;1

�
follows by Lemma B2(iii).
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Lemma B4. Under Assumption INNOV(ii) the following limits apply as n!1:

(i) under P(iii), n�(1+�)=2
Pn
t=1 (xt�1 
 "t)) N (0; VC 
 �"")

(ii) n�(1+�)=2
Pn
t=1 (zt�1 
 "t)) N (0; VCz 
 �"")

(iii) under P(iv), n�1=2
Pn
t=1 (xt�1 
 "t)) N

�
0; E

�
x0;1x

0
0;1 
 "2"02

��
where x0;t is de�ned in (9).

Proof. For part (i), xt is a near stationary process with � 2 (0; 1). The proof is long and

technically demanding and is contained in Magdalinos (2014).

For part (ii), since zt belongs to the class near-stationary processes P(iii) with autoregressive

matrix Rnz = Ir + Cz=n
�, the limit distribution of n�(1+�)=2

Pn
t=1 (zt�1 
 "t) can be deduced

directly by part (i) above: since for an arbitrary near stationary process xt with autoregressive

matrix Rn = Ir + C=n�, the limit distribution of n�(1+�)=2
Pn
t=1 (xt�1 
 "t) is Gaussian with

mean zero and covariance matrix equal to the probability limit of n�1��
Pn
t=1 xt�1x

0
t�1 
 �"";

the limit distribution of n�(1+�)=2
Pn
t=1 (zt�1 
 "t) is Gaussian with mean zero and covariance

matrix equal to the probability limit of n�1��
Pn
t=1 zt�1z

0
t�1 
 �"", the latter being equal to

VCz 
 �"" by (21).

For part (iii), recalling the de�nition of x0;t in (9), Lemma B2(iv) implies that it is enough to

derive the limit distribution of n�1=2
Pn
t=1 (x0;t�1 
 "t). Since fx0;t�1 
 "t : t � 1g is a strictly

stationary and ergodic martingale di¤erence, Theorem 18.3 of Billingsley (1968) implies that

n�1=2
nX
t=1

(x0;t�1 
 "t)) N
�
0; E

�
x0;t�1x

0
0;t�1 
 "t"0t

��
and the result follows by strict stationarity.

1.3 Proof of Theorem A

We use Lemma B1 throughout. For part (i), we start with the signal matrix:

1

n1+�
X 0 ~Z =

X 0 ~Z

n1+�
�
 

1

n3=2

nX
t=1

xt�1

! 
1

n
1
2
+�

nX
t=1

~zt�1

!0

=
X 0 ~Z

n1+�
+

 
1

n3=2

nX
t=1

xt�1

!
1

n1=2
x0nC

�1
z + op (1)

10



using part (i) of Lemma B1. The limit distribution of n�(1+�)X 0 ~Z is given by Lemma 3.1(ii)

and equation (20) of PM. Note that all of the above normalized sums are bounded in probability

for all � > 0. When � = 1 in case P(ii),

1

n1+�
X 0 ~Z ) �

�

uu +

Z 1

0
JCdJ

0
C

�
C�1z +

�Z 1

0
JC

�
JC (1)

0C�1z

= �
�

uu +

Z 1

0
JCdJ

0
C

�
C�1z : (25)

In the unit root case P(i), the limit distribution of n�(1+�)X 0 ~Z can be obtained by substituting

C = 0 in (25):
1

n1+�
X 0 ~Z ) �

�

uu +

Z 1

0
BxdB

0
x

�
C�1z : (26)

In the near�stationary case,
Pn
t=1 xt�1 = Op

�
n1=2+�

�
and xn = Op

�
n�=2

�
with � < 1 by MP.

Equation (20) of PM then yields

1

n1+�
X 0 ~Z =

X 0 ~Z

n1+�
+ op (1) = � (
uu + VCC)C�1z + op (1) : (27)

Combining (25), (26) and (27) and taking into account multiplication by �C�1z yields ~	uu of

Theorem A.

Next, we show that the presence of an intercept in (1) has no e¤ect on the asymptotic

behavior of the E 0 ~Z matrix: using part (i) of Lemma B1

n�(1+�)=2E 0 ~Z = n�(1+�)=2E 0 ~Z �
 

1

n1=2

nX
t=1

"t

! 
1

n1+�=2

nX
t=1

~zt�1

!0

= n�(1+�)=2E 0 ~Z � 1

n
1��
2

1

n
1�(�^1)

2

C�1z

 
1p
n

nX
t=1

"t

!
x0n

n
�^1
2

= n�(1+�)=2
nX
t=1

"t~z
0
t�1 +Op

�
n�

1��
2

�
= n�(1+�)=2

nX
t=1

"tz
0
t�1 + op (1) (28)

by Lemma 3.1(i) of PM. The limit distribution of n�(1+�)=2vec
�
E 0 ~Z

�
is then given by

n�(1+�)=2
nX
t=1

(zt�1 
 "t)) N (0; VCz 
 �"")
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established by Lemma 3.2 of PM under INNOV(i) and Lemma B4(ii) above under INNOV(ii).

Lemma 3.2 of PM also establishes the asymptotic independence as n!1 between n�(1+�)=2E 0 ~Z

and n�(1+�)X 0 ~Z. This completes the proof of part (i) of Theorem A.

For parts (ii)�(iv), 0 � � � � < 1. We �rst show that the presence of an intercept in (1) has

no e¤ect on IVX limit theory. Using the fact that
Pn
t=1 xt�1 = Op

�
n
1
2
+�
�
, the signal matrix

can be written as

n�(1+�)X 0 ~Z = n�(1+�)X 0 ~Z �
 

1

n
1
2
+�

nX
t=1

xt�1

! 
1

n
3
2

nX
t=1

~zt�1

!0
= n�(1+�)X 0 ~Z +Op

�
n�(1��)n�(1��)=2

�
: (29)

where the order of magnitude of
Pn
t=1 ~zt�1 follows from Lemma B1(ii). Using an identical

argument

n�(1+�)=2E 0 ~Z = n�(1+�)=2E 0 ~Z �
 

1

n1=2

nX
t=1

"t

! 
1

n1+�=2

nX
t=1

~zt

!0
= n�(1+�)=2E 0 ~Z +Op

�
n�(1��)=2n�(1��)=2

�
; (30)

so both sample moment matrices n�(1+�)X 0 ~Z and n�(1+�)=2E 0 ~Z are asymptotically equivalent to

n�(1+�)X 0 ~Z and n�(1+�)E 0 ~Z respectively and the limit results of parts (ii) and (iii) of Theorem

A can be deduced by Theorem 3.7 of PM.

It remains to show part (iv) of the theorem that is not included in PM. By Lemma B2,

p
n
�
~AIV X �A

�
=

1p
n
E 0 ~Z

�
1

n
X 0 ~Z

��1
=

 
1p
n

nX
t=1

"tx
0
0;t�1

! 
1

n

nX
t=1

x0;t�1x
0
0;t�1

!�1
+ op (1) (31)

with x0;t de�ned in (9). Under Assumption INNOV(ii), (24) and Lemma B4(iii) imply that
p
nvec

�
~AIV X �A

�
) N (0; V ) where

V =
��
Ex0;1x

0
0;1

��1 
 Im�E �x0;1x00;1 
 "2"02� ��Ex0;1x00;1��1 
 Im� : (32)

Positive de�niteness of the moment matrix E
�
x0;1x

0
0;1

�
is guaranteed by the positive de�niteness
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of �ee = E (e1e
0
1). Under Assumption INNOV(i), conditional homoskedasticity and the 2 + �-

moment condition imposed on the martingale di¤erence sequence et are su¢ cient for the law of

large numbers (24). Also, a standard martingale central limit theorem yields

1p
n

nX
t=1

(x0;t�1 
 "t)) N
�
0; E

�
x0;1x

0
0;1

�

 �""

�

giving
p
nvec

�
~AIV X �A

�
) N

�
0;
�
Ex0;1x

0
0;1

��1 
 �""� : Note that, if the sequence "t is con-
ditionally homoskedastic, the limit matrix V in (32) and

�
Ex0;1x

0
0;1

��1 
 �"" agree.
1.4 Proof of Theorem 1

The �undemeaned�Wald statistic

~WIV X =
�
Hvec ~AIV X � h

�0
~Q�1H

�
Hvec ~AIV X � h

�
~QH = H

h�
X 0P ~ZX

��1 
 �̂""iH 0

with P ~Z =
~Z
�
~Z 0 ~Z
��1

~Z 0 is known to satisfy ~WIV X ) �2 (q) as n ! 1 by Theorem 3.8 of

PM for all � > 0, i.e., all predictors belonging to classes P(i)�P(iii) under Assumption INNOV.

We need to prove that: (a) ~WIV X ) �2 (q) for stable regressors in P(iv) with � = 0 under

Assumption INNOV(i); (b) WIV X � ~WIV X = op (1), i.e., establish an asymptotic equivalence

between WIV X in Theorem 1 and ~WIV X above.

For (a), letting xt be a stable regressor in P(iv) with � = 0 and using Lemma B2 repeatedly

we obtain

n ~QH = H

"�
X 0X

n

��1

 �̂""

#
H 0 + op (1)!p Q := H

h�
Ex1x

0
1

��1 
 �""iH 0

by Assumption INNOV(i). Under the null hypothesis,

�n = ~Q
�1=2
H

�
Hvec ~AIV X � h

�
=
�
n ~QH

��1=2
Hvec

p
n
�
~AIV X �A

�
=

�
n ~QH

��1=2
H

"�
X 0X

n

��1

 Im

#
1p
n

nX
t=1

(xt�1 
 "t)

) Q�1=2N (0; Q) =d N (0; Iq)
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and ~WIV X = �0n�n ) �2 (q), where q is the rank of the matrix H.

Having established that ~WIV X ) �2 (q) for all processes xt belonging to P(i)�P(iv) under

INNOV(i) and for xt belonging to P(i)�P(iii) under INNOV(ii), Theorem 1 will follow by es-

tablishing (b). In view of the form of WIV X and ~WIV X , WIV X � ~WIV X = op (1) is equivalent

to 


M� ~Z 0 ~Z 
 �̂""



 = n k�zn�1k2





̂FM


 = op

�


 ~Z 0 ~Z


� : (33)

Note �rst that




̂FM


 = Op (1) for all � � 0, so we need to compare the rate of n k�zn�1k2 with

that of



 ~Z 0 ~Z


 and show that (33) is satis�ed for each class P(i)�P(iv).

For 0 < � < �, part (i) of Lemma B1 yields

n k�zn�1k2 =
1

n







nX
t=1

~zt�1







2

=
1

n
Op

�
n1+2�

�
= Op

�
n2�
�
= op

�


 ~Z 0 ~Z


�

since ~Z 0 ~Z = Op
�
n1+�

�
. This establishes (33) for P(i)�P(iii) when � < �.

It remains to show (33) when 0 � � � �. Using part (ii) of Lemma B1,

n k�zn�1k2 =
1

n







nX
t=1

~zt�1







2

= Op

�
n2�+��1

�
= op

�


 ~Z 0 ~Z


�

since



 ~Z 0 ~Z


 = Op (kX 0Xk) = n1+�: This establishes (33), (b) and the theorem.

2. Additional Monte Carlo results

2.1 Finite�sample size for alternative values of autocorrelation coe¢ cient �

Using the univariate DGP in Section 2.1 of the main body of the study, we examine the �nite�

sample performance of the proposed IVX�Wald statistic and the Q�statistic of CY using alter-

native degrees of autocorrelation in the error term of the autoregression (�). Recall that we run

a 5% two�sided test under the null hypothesis H0 : A = 0 for each of these two statistics. We

consider sample sizes n = 100; 250; 500; 1000, residuals�correlation � = �0:95;�0:5; 0; 0:5; 0:95

and C = 0;�5;�10;�20;�50. Table A1 presents the �nite�sample size of these two statistics

for � = 0:25: The Wald statistic appears to have size very close to 5% in all cases considered.

The Q�statistic appears to have the correct size for combinations of � 2 f�0:95; 0; 0:95g and
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C 2 f0;�5;�10;�20g : However, for j�j = 0:5 the Q�statistic becomes undersized, while for

j�j = 0:95 and C = �50 it becomes severely oversized.

�Table A1 here�

Table A2 presents the corresponding simulation results for � = �0:1. The main conclusions

regarding the comparison between the Wald statistic and the Q�statistic are very similar to the

ones drawn from Table A1. The Wald statistic appears to have size very close to 5%. The Q�

statistic has the correct size for � = 0; but it is severely oversized for low degrees of persistence

(C = �50) when j�j = 0:95, while for high degrees of persistence (�20 � C � 0) and j�j = 0:5 it

appears to be undersized. The undersizing of the Q�statistic does not disappear as the sample

size increases.

�Table A2 here�

2.2 Power plots for n = 1000

In this subsection, we present the �nite�sample power properties of the Wald, CY and JM

statistics for sample size n = 1000. Figure A1 presents the power plots for � = �0:95, while

Figures A2 and A3 present the corresponding plots for � = �0:5 and � = 0. The conclusions on

the relative performance of the Wald and Q-statistic are identical to those obtained for n = 250

and discussed in the main body of the paper. In sum, the IVX-Wald test outperforms the Q-

statistic for all persistence and correlation scenarios apart from the unit root case (C = 0) when

� 2 f�0:95; 0g. For � = 0, the power plots of these two statistics are almost indistinguishable.

Finally, despite the increased sample size, the JM statistic still exhibits a signi�cant lack of

power relative to the other two statistics. This problem is magni�ed as we move away from the

unit root case for all values of � considered.

�Figures A1 to A3 here�

2.3 Power plots for autocorrelation coe¢ cient � = 0:5

In this subsection, we present the �nite�sample power properties of the Wald and the Q�statistic

in the presence of autocorrelation in the error term of the autoregressive equation (�). In

particular, the subsequent power plots are computed using � = 0:5. Figure A4 presents the
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power plots for sample size n = 250 and � = �0:95. In the unit root case (C = 0), the Wald

statistic is more powerful for alternatives close to the null, but for alternatives farther away,

the Q�statistic becomes more powerful. For lower degrees of persistence, the Wald statistic

dominates the Q�statistic. Figure A5 presents the corresponding power comparison for n = 250

and � = �0:5. In this case, the Wald statistic dominates the Q�statistic in terms of power for

every degree of persistence considered. Finally, Figure A6 presents the corresponding power

plots for n = 250 and � = 0. The Q�statistic is more powerful than the Wald statistic in the

unit root case (C = 0), but for lower degrees of persistence, the two statistics appear to have

almost exactly the same power.

�Figures A4�A6 here�

Figures A7, A8 and A9 present the corresponding power plots for these two statistics for

n = 1000; � = 0:5 and residuals� correlation coe¢ cient � = �0:95; �0:5 and 0, respectively.

These plots point to the same conclusions as the ones derived from Figures A4�A6 that we

discussed above.

�Figures A7�A9 here�

2.4 Alternative kernels for the estimation of the long�run covariance matrix

In this subsection, we examine the robustness of the �nite�sample properties of the IVX�Wald

statistic with respect to the choice of kernel for the estimation of the long�run covariance matrix.1

In particular, apart from the Bartlett kernel that we use in the benchmark results, we alterna-

tively use: i) the Parzen kernel and ii) the Quadratic Spectral kernel. Figure A10 illustrates

the power of the IVX�Wald test for n = 250 and � = �0:95 using each of the aforementioned

kernels. In the unit root case (C = 0), the Bartlett kernel appears to deliver marginally higher

power, while for the rest persistence scenarios, the powers derived from these kernels appear to

be almost exactly the same. Figures A11 and A12 present the corresponding power comparisons

for the Wald statistic across these three kernels using � = �0:5 and � = 0, respectively. In both

cases, the power plots are almost indistinguishable across the three kernels used.

�Figures A10�A12 here�
1We would like to thank an anonymous referee for suggesting this robustness check.
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2.5 Alternative choice of lag length for the Newey�West estimator

In this subsection, we examine the robustness of the �nite�sample properties of the IVX�Wald

statistic when alternative lag lengths are used for the Newey�West estimator of the long�run

covariance matrix.2 In particular, apart from the truncation lag n1=3 that we use in the bench-

mark results, we alternatively consider the following truncation lags: i) n1=4 and ii) n1=2, where

n is the sample size. Figure A13 illustrates the power of the Wald statistic for n = 250 and

� = �0:95 using each of the aforementioned lag lengths. We observe that in the unit root case

(C = 0), the truncation lag n1=2 appears to yield the highest power. In the rest persistence

scenarios (C < 0), the choice of truncation lag seems to yield no di¤erence in terms of power.

This is also true regardless of the degree of regressor persistence for the case where � = �0:5,

presented in Figure A14, and the case where � = 0, presented in Figure A15. In both cases, the

power plots are almost indistinguishable across the three truncation lags used.

�Figures A13�A15 here�

Summarising the results presented in Figures A10�A15, the �nite�sample properties of the

Wald statistic are not substantially a¤ected by the choice of the kernel or the choice of the lag

length used in the estimation of the long�run covariance matrix.

2.6 Alternative values of � for the construction of instrument ~z

In this subsection, we examine the e¤ect of the value of parameter � used for the construction

of instruments ~z on the �nite�sample properties of the Wald statistic. Recalling that in our

setup � 2 (0; 1), we consider 45 alternative values for � 2 f0:10; 0:12; :::; 0:98g. The presented

simulation results are derived using sample size n = 500. For each value of � considered, we

calculate the �nite�sample size of the Wald test under the null hypothesis H0 : A = 0 as well

as its power when the true value of A takes each of the following values: A 2 f0:02; 0:04; 0:06g.

As in the previous simulations, we consider various degrees of regressor persistence, i.e., C 2

f0;�5;�10;�15;�20;�50g.

Figure A16 presents the rejection rates as a function of � for the case of � = �0:95. We

observe that the size of the test is very close to the nominal 5% level regardless of the value of

2We would like to thank the Editor for suggesting this robustness check.
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�. This holds true for all cases of regressor persistence considered. This observation rea¢ rms in

�nite samples the asymptotic properties of the IVX-Wald test for a very wide range of values of

�. With respect to the power of the test, we �nd that it increases monotonically as � increases,

since the rejection rate increases with � for each true value A > 0. A closer inspection of these

power plots suggests that starting from moderate values of �, there are still considerable power

gains if we further increase � towards its upper boundary, especially when the true alternative A

is closer to the null. This crucial observation demonstrates that increasing the value of � o¤ers

further power gains where we need them the most, that is for true values of A close to the null.

Figures A17 and A18 present the corresponding rejection rates when � = �0:5 and � = 0,

respectively. The conclusions derived from these Figures are very similar to the ones discussed

above for the case of � = �0:95. Given this evidence, we can con�dently argue that high values

of � yield the highest level of power for the Wald test and, at the same time, yield size very

close to the nominal 5%. Therefore, in the empirical implementation of our testing procedure,

we use � = 0:95, which is among the highest values that � can take.

�Figures A16�A18 here�

2.7 Finite�sample properties using conditionally heteroskedastic DGP

The DGP utilized in the benchmark Monte Carlo simulations assumed homoskedasticity for the

innovations of the predictive regression. In this section, we use an alternative DGP that allows

these innovations to be conditionally heteroskedastic. Recalling that the asymptotic results

for the proposed Wald statistic are valid under conditional heteroskedasticity too, we use a

heteroskedastic DGP to examine the �nite�sample properties of the statistic and compare them

with the corresponding properties of the Q�statistic of CY.

In particular, we use the following GARCH(1,1) DGP for the innovations of the univariate

predictive regression:

yt = �+Axt�1 +
p
ht"t (34)

ht = ! + �1ht�1 + �1"
2
t�1; (35)

while the rest features of the DGP remain the same as in the benchmark case presented in
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Section 2.1 of the main body of the study.

To render the heteroskedastic DGP empirically relevant, we estimate regression (34) using

CRSP S&P 500 log excess returns as the regressand and the dividend yield as the regressor, and

�t a GARCH(1,1) model to the variance of the regression residuals. Using monthly data for the

full sample period, the estimated GARCH(1,1) coe¢ cients are �̂1 = 0:13 and �̂1 = 0:85.

Using this conditionally heteroskedastic DGP, Table A3 presents the �nite�sample size of

the Wald and the Q�statistic for n = 100; 250; 500; 1000, � = �0:95;�0:5; 0; 0:5; 0:95 and

C = 0;�5;�10;�20;�50. We �nd that the Wald statistic exhibits no size distortion for all

combinations considered. The Q�statistic exhibits correct size for � = 0, but it is oversized for

the combination n = 100; j�j = 0:95 and C = �50; while it is undersized when j�j = 0:5.

�Table A3 here�

The introduction of conditional heteroskedasticity in the innovations of the predictive re-

gression alters the comparative performance of the two statistics in terms of power relative to

the benchmark simulation results under homoskedasticity. Figure A19 presents the power of the

Wald and the Q�statistic under the conditionally heteroskedastic DGP, when � = �0:95 and

n = 1000. In this case, the Wald statistic dominates the Q�statistic for every degree of regressor

persistence considered. The same conclusion is derived from Figure A20, referring to the case

where � = �0:5. However, for the case where � = 0, presented in Figure A21, we �nd that in

the unit root case (C = 0), the Q�statistic has higher power than the Wald statistic. For all

other degrees of regressor persistence (C < 0), the two statistics appear to have the same power.

Very similar are the results for the other sample sizes, which are available upon request.

�Figures A19�A21 here�

2.8 Power plots for the long�horizon Wald statistic

In this subsection, we present the �nite�sample power properties of the long�horizon Wald

statistic for sample size n = 1000 and horizons K = 12; 36; 60 as well as for sample size n = 500

and horizons K = 4; 12; 20. Figure A22 shows the power of the long�horizon Wald statistic for

n = 1000 and correlation � = �0:95. We �nd that for all horizons considered, the power of the

statistic increases as the true value of A increases. Moreover, in each case, as the predictive
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horizon increases, the power of the statistic decreases. It should be also noted that the di¤erence

in power across the horizons increases as the regressor persistence decreases. Figures A23 and

A24 present the corresponding power plots for � = �0:5 and � = 0, respectively, yielding very

similar conclusions.

�Figures A22�A24 here�

Figures A25 to A27 illustrate the corresponding power plots for n = 500, which exhibit very

similar patterns to the ones derived from the power plots for n = 1000; the power of the long�

horizon Wald statistic increases as the true value of A increases, while in each case, the power of

the statistic decreases as the predictive horizon increases. The loss of power due to the increase

of the horizon becomes relatively bigger when the persistence of the regressor decreases. To the

contrary, for a highly persistent regressor, this loss is small, implying that the Wald statistic is

very powerful even when very long predictive horizons are considered.

�Figures A25�A27 here�

3. Additional Empirical Results

3.1 De�nitions of variables

Table A4 contains the de�nitions of the variables used as predictors in this study and an indica-

tive list of prior studies that have examined their predictive ability. In particular, we consider

the following twelve variables: T�bill rate (tbl), long�term yield (lty), term spread (tms), de-

fault yield spread (dfy), dividend�price ratio (d/p), dividend yield (d/y), earnings�price ratio

(e/p), dividend payout ratio (d/e), book�to�market value ratio (b/m), net equity expansion

(ntis), in�ation rate (inf) and consumption�wealth ratio (cay).

�Table A4 here�

3.2 Regressors�persistence properties with annual data

Table A5 reports the least squares point estimate of the autoregressive root bRn and the results
of four unit root tests (ADF, DF�GLS, PP and KPSS) for each of the 12 predictors considered

in this study. The results are very similar to the ones reported for monthly and quarterly data
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in the main body of the study. The autoregressive roots of d/p, d/y, e/p, lty and b/m are

remarkably close to unity, while tbl, d/e and dfy also exhibit autoregressive roots greater than

0.9, demonstrating the very high degree of persistence of these regressors at the annual frequency

too. On the other hand, tms, cay and ntis, appear to be somewhat less persistent relative to

the quarterly frequency. Most importantly, the ambiguity regarding the predictors� order of

integration remains unresolved and the unit root tests lead to con�icting conclusions for most

of them. There seems to be agreement only on that lty and d/y have a unit root and that dfy

and cay are stationary. This evidence further highlights the di¢ culty in modeling the exact type

of persistence of these predictors at any frequency. The proposed IVX�Wald test sidesteps this

problem by yielding robust inference with respect to their (uncertain) time series properties.

�Table A5 here�

3.3 Predictability tests with annual data

3.3.1 1�period results This subsection presents the results from univariate predictability

tests using annual data for each of the 12 employed predictors. Results are reported in Table A6

for the full sample period, 1927�2012, with the exception of cay which becomes available after

1945. Our �ndings are very similar to the ones reported for quarterly data in the main body

of the study. In particular, according to the IVX�Wald test, we �nd that d/y, e/p and b/m

are signi�cant predictors at the 10% level, while ntis is signi�cant at the 5% level. Moreover,

we con�rm that cay is highly signi�cant using annual data too. Comparing these results with

the inference derived from CY�s Q�test, the most important di¤erence is that the latter would

fail to indicate the signi�cance of e/p and b/m. With respect to the standard t�ratio, the

main di¤erence is that it would additionally indicate d/p as signi�cant at the 10% level and

b/m at the 5% level due to its tendency to overreject the null of no predictability, especially

for predictors exhibiting a high degree of endogeneity. Finally, our main di¤erence with the

inference derived from the JM statistic refers to the level of signi�cance for various predictors.

Most importantly, the JM test would �nd cay to be signi�cant only at the 10% level (p�value:

0.08); it would additionally indicate dfy to be marginally signi�cant, while we �nd this variable

to be insigni�cant.

�Table A6 here�
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3.3.2 Long�horizon results This subsection presents the results from long�horizon univari-

ate predictability tests using annual data. We use predictive horizons up to 5 years. Results are

reported in Table A7. Panel A contains the full sample period results, while Panel B reports

the corresponding results for the post�1952 period. With respect to the full sample period,

we �nd that predictability becomes weaker, not stronger, as the predictive horizon increases.

The only exception is tms which becomes marginally signi�cant as we examine horizons beyond

two years. None of the examined predictors is signi�cant at the 5% level when we consider

horizons beyond three years. Moreover, in comparison to the 1�year results in Table A6, d/y,

e/p and b/m, which were signi�cant at the 10% level, eventually become insigni�cant for longer

predictive horizons. The results for the post�1952 period are even more striking. We �nd no

evidence of predictability at any horizon beyond one year with two exceptions: i) cay remains

signi�cant at the 5% level even as we increase the horizon to 5 years and ii) d/e is signi�cant

at longer horizons, but only marginally. Overall, results based on annual data corroborate the

results in the main body of the study. Predictability becomes overall weaker, not stronger, as

the examined horizon increases, while it almost disappears in the post�1952 period, with the

exception of cay, which is the only predictor that remains signi�cant at the 5% level for all

horizons considered.

�Table A7 here�
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Table A1 

Finite−sample sizes with autocorrelation coefficient 0.25   in the residuals of the autoregression 

This table presents finite−sample sizes, testing the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (22) when the autocorrelation coefficient in the residuals of the 

autoregression (23) is  0.25. W0.05 corresponds to the rejection rate for the Wald statistic, defined in (19), with 5% nominal size and Q0.05 corresponds to the rejection rate resulting 

from the 95% confidence interval for the Campbell and Yogo (2006) Q-test. Results are reported for different degrees of correlation between the residuals of regressions (22) and 

(23) in the main body of the study,  −0.95, −0.5, 0, 0.5 and 0.95, different sample sizes n= 100, 250, 500 and 1,000 and for different local-to-unity parameters C= 0, −5, −10, 

−15, −20 and −50, which in each sample size case correspond to different autoregressive roots (Rn) reported in the third column. The reported results are based on the Monte Carlo 

simulation described in Section 2.1 of the main body of the study and the average rejection rates are calculated over 10,000 repetitions. 

   0.95    0.50    0   0.50   0.95   

n C Rn W0.05 Q0.05 W0.05 Q0.05 W0.05 Q0.05 W0.05 Q0.05 W0.05 Q0.05 

100 0 1.000 0.062 0.048 0.062 0.040 0.045 0.047 0.062 0.039 0.066 0.050 

 −5 0.950 0.067 0.045 0.066 0.039 0.054 0.049 0.061 0.035 0.073 0.053 

 −10 0.900 0.064 0.051 0.060 0.036 0.056 0.049 0.061 0.036 0.065 0.053 

 −20 0.800 0.055 0.071 0.059 0.040 0.058 0.051 0.058 0.039 0.060 0.073 

 −50 0.500 0.057 0.173 0.054 0.065 0.060 0.055 0.059 0.068 0.056 0.170 

250 0 1.000 0.061 0.042 0.057 0.036 0.052 0.049 0.054 0.036 0.060 0.043 

 −5 0.980 0.063 0.044 0.060 0.033 0.053 0.049 0.056 0.031 0.066 0.045 

 −10 0.960 0.062 0.044 0.056 0.032 0.051 0.051 0.054 0.029 0.062 0.047 

 −20 0.920 0.064 0.071 0.052 0.028 0.054 0.049 0.054 0.031 0.063 0.061 

 −50 0.800 0.055 0.218 0.052 0.063 0.049 0.047 0.055 0.063 0.053 0.210 

500 0 1.000 0.072 0.054 0.066 0.044 0.050 0.051 0.061 0.039 0.073 0.054 

 −5 0.990 0.072 0.053 0.063 0.040 0.053 0.049 0.062 0.037 0.073 0.053 

 −10 0.980 0.068 0.047 0.060 0.036 0.054 0.050 0.061 0.034 0.071 0.052 

 −20 0.960 0.063 0.059 0.055 0.032 0.056 0.051 0.056 0.033 0.061 0.056 

 −50 0.900 0.053 0.150 0.051 0.053 0.055 0.052 0.056 0.055 0.055 0.155 

1000 0 1.000 0.054 0.039 0.056 0.037 0.048 0.048 0.055 0.034 0.055 0.041 

 −5 0.995 0.064 0.044 0.057 0.032 0.050 0.050 0.050 0.030 0.060 0.044 

 −10 0.990 0.061 0.044 0.056 0.032 0.050 0.048 0.054 0.030 0.062 0.048 

 −20 0.980 0.056 0.046 0.055 0.030 0.056 0.053 0.051 0.030 0.060 0.047 

 −50 0.950 0.058 0.097 0.055 0.036 0.052 0.049 0.054 0.035 0.052 0.101 
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Table A2 

Finite−sample sizes with autocorrelation coefficient 0.1    in the residuals of the autoregression 

This table presents finite−sample sizes, testing the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (22) when the autocorrelation coefficient in the residuals of the 

autoregression (23) is  −0.1. W0.05 corresponds to the rejection rate for the Wald statistic, defined in (19), with 5% nominal size and Q0.05 corresponds to the rejection rate 

resulting from the 95% confidence interval for the Campbell and Yogo (2006) Q-test. Results are reported for different degrees of correlation between the residuals of regressions 

(22) and (23) in the main body of the study,  −0.95, −0.5, 0, 0.5 and 0.95, different sample sizes n= 100, 250, 500 and 1,000 and for different local-to-unity parameters C= 0, −5, 

−10, −15, −20 and −50, which in each sample size case correspond to different autoregressive roots (Rn) reported in the third column. The reported results are based on the Monte 

Carlo simulation described in Section 2.1 of the main body of the study and the average rejection rates are calculated over 10,000 repetitions. 

   0.95    0.50    0   0.50   0.95   

n C Rn W0.05 Q0.05 W0.05 Q0.05 W0.05 Q0.05 W0.05 Q0.05 W0.05 Q0.05 

100 0 1.000 0.067 0.053 0.063 0.041 0.052 0.052 0.062 0.042 0.065 0.048 

 −5 0.950 0.067 0.056 0.058 0.038 0.053 0.047 0.060 0.039 0.072 0.063 

 −10 0.900 0.064 0.064 0.063 0.044 0.056 0.050 0.057 0.040 0.064 0.064 

 −20 0.800 0.060 0.098 0.052 0.041 0.054 0.047 0.057 0.046 0.061 0.103 

 −50 0.500 0.055 0.323 0.056 0.126 0.054 0.049 0.053 0.119 0.055 0.306 

250 0 1.000 0.063 0.044 0.060 0.037 0.051 0.051 0.053 0.034 0.055 0.040 

 −5 0.980 0.061 0.045 0.058 0.036 0.054 0.050 0.055 0.033 0.063 0.045 

 −10 0.960 0.062 0.051 0.052 0.029 0.054 0.051 0.056 0.036 0.058 0.047 

 −20 0.920 0.057 0.071 0.053 0.034 0.056 0.051 0.056 0.035 0.058 0.070 

 −50 0.800 0.052 0.217 0.054 0.067 0.051 0.048 0.047 0.062 0.052 0.225 

500 0 1.000 0.059 0.042 0.056 0.037 0.050 0.049 0.052 0.036 0.058 0.041 

 −5 0.990 0.062 0.046 0.056 0.032 0.052 0.053 0.050 0.030 0.061 0.044 

 −10 0.980 0.065 0.046 0.055 0.032 0.050 0.049 0.052 0.031 0.062 0.045 

 −20 0.960 0.060 0.053 0.050 0.030 0.054 0.053 0.051 0.029 0.057 0.055 

 −50 0.900 0.052 0.164 0.048 0.047 0.050 0.048 0.054 0.053 0.056 0.171 

1000 0 1.000 0.059 0.042 0.053 0.031 0.050 0.049 0.052 0.037 0.054 0.040 

 −5 0.995 0.063 0.043 0.055 0.030 0.050 0.049 0.054 0.030 0.062 0.046 

 −10 0.990 0.058 0.044 0.053 0.030 0.051 0.050 0.054 0.030 0.052 0.041 

 −20 0.980 0.058 0.045 0.053 0.030 0.052 0.051 0.057 0.032 0.057 0.049 

 −50 0.950 0.051 0.127 0.051 0.040 0.051 0.048 0.054 0.040 0.052 0.126 
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Table A3 

Finite−sample sizes using a conditionally heteroskedastic DGP for stock returns 

This table presents finite−sample sizes, testing the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (34) of the Online Appendix when the DGP for stock returns is 

conditionally heteroskedastic and  there is no autocorrelation ( 0) in the residuals of the autoregression. In particular, the residuals of the predictive regression for stock returns are 

conditionally heteroskedastic, following a GARCH (1,1) process. The employed parameter values are derived from fitting a GARCH (1,1) to the residuals estimated from regressing 

S&P 500 value-weighted log excess returns on dividend yield, using monthly data for the period 1927−2012. W0.05 corresponds to the rejection rate for the Wald statistic, defined in 

(19), with 5% nominal size and Q0.05 corresponds to the rejection rate resulting from the 95% confidence interval for the Campbell and Yogo (2006) Q-test. Results are reported for 

different degrees of correlation between the residuals,  −0.95, −0.5, 0, 0.5 and 0.95, different sample sizes n= 100, 250, 500 and 1,000 and for different local-to-unity parameters 

C= 0, −5, −10, −15, −20 and −50, which in each sample size case correspond to different autoregressive roots (Rn) reported in the third column. The reported results are based on the 

Monte Carlo simulation described in Section 2.7 of the Online Appendix and the average rejection rates are calculated over 10,000 repetitions. 

   0.95    0.50    0   0.50   0.95   

n C Rn W0.05 Q0.05 W0.05 Q0.05 W0.05 Q0.05 W0.05 Q0.05 W0.05 Q0.05 

100 0 1.000 0.066 0.046 0.062 0.041 0.051 0.053 0.064 0.043 0.062 0.040 

 −5 0.950 0.058 0.044 0.058 0.039 0.054 0.049 0.059 0.041 0.061 0.037 

 −10 0.900 0.057 0.041 0.059 0.039 0.054 0.048 0.060 0.041 0.058 0.039 

 −20 0.800 0.056 0.050 0.055 0.043 0.055 0.051 0.058 0.048 0.053 0.050 

 −50 0.500 0.050 0.140 0.051 0.093 0.052 0.051 0.050 0.091 0.050 0.135 

250 0 1.000 0.053 0.036 0.053 0.038 0.051 0.052 0.059 0.043 0.057 0.036 

 −5 0.980 0.058 0.034 0.051 0.032 0.053 0.051 0.053 0.035 0.056 0.033 

 −10 0.960 0.052 0.030 0.051 0.033 0.053 0.050 0.053 0.035 0.058 0.033 

 −20 0.920 0.047 0.031 0.049 0.030 0.052 0.048 0.056 0.036 0.047 0.032 

 −50 0.800 0.048 0.070 0.045 0.056 0.056 0.055 0.047 0.053 0.045 0.067 

500 0 1.000 0.053 0.032 0.048 0.034 0.050 0.052 0.055 0.035 0.049 0.033 

 −5 0.990 0.055 0.032 0.051 0.032 0.048 0.047 0.054 0.034 0.053 0.031 

 −10 0.980 0.049 0.028 0.053 0.034 0.051 0.050 0.051 0.032 0.053 0.030 

 −20 0.960 0.050 0.030 0.049 0.030 0.053 0.050 0.053 0.033 0.047 0.028 

 −50 0.900 0.045 0.043 0.048 0.041 0.049 0.048 0.047 0.040 0.044 0.042 

1000 0 1.000 0.048 0.033 0.051 0.035 0.048 0.048 0.052 0.036 0.047 0.031 

 −5 0.995 0.056 0.029 0.051 0.032 0.055 0.054 0.058 0.036 0.054 0.029 

 −10 0.990 0.054 0.030 0.056 0.034 0.049 0.049 0.052 0.031 0.049 0.027 

 −20 0.980 0.047 0.024 0.046 0.027 0.057 0.054 0.050 0.033 0.045 0.026 

 −50 0.950 0.043 0.028 0.046 0.031 0.053 0.053 0.043 0.028 0.044 0.029 
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Table A4 

Definitions of predictive regressors 

This table reports the variables used as predictive regressors in this study, their definition and some prior studies that have examined their predictive ability. 

Variable Definition Indicative list of prior studies 

Dividend payout ratio (d/e) Difference between the log of dividends and the log of 

earnings 

Lamont (1998) 

Earnings-price ratio (e/p) Difference between the log of earnings and the log of stock 

prices. Earnings are calculated using a 12-month rolling 

sum of earnings of S&P 500 companies 

Campbell and Shiller (1988), Fama and French (1988), Pesaran and 

Timmermann (1995), Lamont (1998), Lewellen (2004), Ang and 

Bekaert (2007), Campbell and Thompson (2008) 

Long-term yield (lty) Long-term US government bond yield from Ibbotson's 

Stocks, Bonds, Bills and Inflation Yearbook 

Keim and Stambaugh (1986), Fama and French (1989), Pontiff and 

Schall (1998), Torous et al. (2004), Campbell and Yogo (2006) 

T-bill rate (tbl) 3-month US Treasury bill rate taken from FRED. For the 

period before 1934 it is extracted from the NBER 

Macrohistory database 

Pesaran and Timmermann (1995), Pontiff and Schall (1998), 

Torous et al. (2004), Campbell and Yogo (2006), Ang and Bekaert 

(2007), Avramov (2002), Campbell and Thompson (2008) 

Term spread (tms) Difference between the long-term yield and the T-bill rate As for the long-term yield 

Dividend-price ratio (d/p) Difference between the log of dividends and the log of 

stock prices. Dividends are calculated using a 12-month 

rolling sum of dividends paid on the S&P 500 index 

Rozeff (1984), Campbell (1987), Campbell and Shiller (1988), 

Fama and French (1988), Hodrick (1992), Lamont (1998), 

Stambaugh (1999), Wolf (2000), Goyal and Welch (2003), 

Lewellen (2004), Torous et al. (2004), Lettau and Ludvigson 

(2005), Campbell and Yogo (2006), Ang and Bekaert (2007), 

Campbell and Thompson (2008) 

Dividend yield (d/y) Difference between the log of dividends and the log of 

lagged stock prices 

Default yield spread (dfy) Difference between the BAA and AAA-rated corporate 

bond yields taken from FRED 

Fama and French (1989), Avramov (2002), Torous et al. (2004), 

Campbell and Thompson (2008) 

Book-to-market value ratio (b/m) Ratio of book value to market value for the DJIA Kothari and Shanken (1997), Pontiff and Schall (1998), Avramov 

(2002), Lewellen (2004), Campbell and Thompson (2008) 

Net equity expansion (ntis) Ratio of the 12-month moving sum of net equity issues by 

NYSE listed stocks divided by the total end-of-year market 

capitalization of these stocks 

Boudoukh et al. (2007) use net payout yield, Welch and Goyal 

(2008) 

Inflation rate (inf) Based on the Consumer Price Index from the Bureau of 

Labor Statistics 

Fama and Schwert (1977), Fama (1981), Welch and Goyal (2008) 

Consumption-wealth ratio (cay) Transitory deviation of consumption from its cointegrating 

relationship with asset holdings and labor income 

Lettau and Ludvigson (2001), Welch and Goyal (2008) 
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Table A5 

Unit root tests for predictive regressors−Annual data 
This table presents the results of unit root tests for the following list of financial and economic variables defined in Section 

3 of the main body of the study: Dividend payout ratio (d/e), long-term yield (lty), dividend yield (d/y), dividend price 

ratio (d/p), T-bill rate (tbl), earnings price ratio (e/p), book-to-market value ratio (b/m), default yield spread (dfy), net 

equity expansion (ntis), term spread (tms), inflation rate (inf) and consumption-wealth ratio (cay). ˆ
nR  corresponds to the 

least squares point estimate of the AR(1): 1t n t tx R x u  . ADF stands for the augmented Dickey-Fuller test statistic, 

DF-GLS refers to the Elliot et al. (1996) Dickey-Fuller-GLS test statistic, PP stands for the Phillips-Perron test statistic 

and KPSS refers to the Kwiatkowski et al. (1992) test statistic. The Bayesian Information Criterion has been been used to 

select the optimal lag length for ADF and DF-GLS test statistics. The sample period is 1927−2012. *, ** and *** imply 

rejection of the null hypothesis of a unit root (for ADF, DF-GLS and PP) or stationarity (for KPSS) at 10%, 5% and 1% 

level respectively. 

 

 ˆ
nR  ADF DF-GLS PP KPSS 

Dividend payout ratio 0.923 −4.498*** −4.525*** −4.403*** 1.026*** 

Long-term yield 0.989 −1.259 −1.227 −1.153 0.528** 

Dividend yield 1.000 −1.621 −1.223 −1.667 0.764*** 

Dividend-price ratio 1.000 −2.219 −1.884* −2.025 0.901*** 

T-bill rate 0.953 −1.763 −1.809* −1.894 0.456* 

Earnings-price ratio 0.996 −3.617*** −3.180*** −3.570*** 0.407* 

Book-to-market value ratio 0.973 −2.606* −2.484** −2.614* 0.515** 

Default yield spread 0.913 −3.758*** −3.719*** −3.787*** 0.223 

Net equity expansion 0.681 −5.128*** −2.877*** −4.891*** 0.633** 

Term spread 0.829 −4.565*** −4.064*** −4.234*** 0.350* 

Inflation rate 0.771 −2.230 −1.477 −4.213*** 0.325 

Consumption-wealth ratio 0.706 −3.521** −2.142** −3.827*** 0.120 

 

 

 

 

 

 

 

 



31 
 

Table A6 

Univariate predictive regressions−Annual data 
This table presents the results of univariate predictive regression models, as in equation (1), during the sample period 1927−2012. The dependent variable is the annual S&P 

500 value-weighted log excess returns and the lagged persistent regressor is each of the following variables defined in Section 3 of the main body of the study: Dividend 

payout ratio (d/e), long-term yield (lty), dividend yield (d/y), dividend price ratio (d/p), T-bill rate (tbl), earnings price ratio (e/p), book-to-market value ratio (b/m), default 

yield spread (dfy), net equity expansion (ntis), term spread (tms), inflation rate (inf) and consumption-wealth ratio (cay). The sample period for cay is 1945−2012. 
OLSA

stands for the least squares slope coefficient estimated via regression model (1), while 
OLSt  is the corresponding t-statistic under the null hypothesis that A  is equal to zero 

(i.e., no predictability). 
IVXA , defined in (17), stands for the slope coefficient for the predictive regression (16) estimated via the proposed instrumental variable (IVX) 

approach, while IVX-Wald refers to the Wald statistic, defined in equation (19), under the null hypothesis that the slope coefficient A  is equal to zero.   denotes the 

correlation coefficient between the residuals of regression models (1) and (2). *, ** and *** imply rejection of the null hypothesis at 10%, 5% and 1% level respectively. CY 

90% CI stands for the 90% Bonferroni confidence interval for the bias-corrected scaled least squares slope coefficient of the predictive regression using the Q-test of 

Campbell and Yogo (2006). Bold fonts indicate rejection of the null hypothesis of no predictability at the 10% level. JM reports the p-value for the *

0.05  statistic of Jansson 

and Moreira (2006) under the null hypothesis of no predictability. 

 

Regressors 
OLSA  OLSt  IVXA  IVX-Wald   CY 90% CI JM 

Dividend payout ratio 0.0142 0.21 0.0059 0.008 −0.325 −0.146 0.188 0.15 

Long-term yield −0.4464 −0.56 −0.4494 0.301 −0.044 −0.070 0.038 0.40 

Dividend yield 0.0887 1.84* 0.0985 3.579* 0.051 0.004 0.130 0.02** 

Dividend-price ratio 0.0775 1.67* 0.0823 2.635 −0.816 −0.026 0.181 0.42 

T-bill rate −0.7904 −1.13 −0.7593 1.154 0.127 −0.142 0.029 0.35 

Earnings-price ratio 0.0878 1.69* 0.0882 2.849* −0.248 −0.001 0.268 0.03** 

Book-to-market value ratio 0.1718 2.11** 0.1571 3.646* −0.797 −0.000 0.235 0.03** 

Default yield spread 0.5537 0.20 0.0789 0.001 −0.626 −0.117 0.204 0.09* 

Net equity expansion −1.6430 −2.09** −2.0374 4.660** 0.101 −0.356 −0.046 0.05* 

Term spread 2.1038 1.38 2.0318 1.755 −0.135 −0.029 0.271 0.33 

Inflation rate 0.1704 0.32 0.1991 0.131 −0.024 −0.121 0.127 0.47 

Consumption-wealth ratio 2.3950 2.88*** 2.6013 8.238*** −0.408 0.008 0.253 0.08* 

 



32 
 

Table A7 

Long−horizon univariate predictive regressions−Annual data 
This table presents the results of long-horizon univariate predictive regression models, as in equation (30), during the sample periods 1927−2012 (Panel A) and 1952−2012 (Panel 

B), for various horizons (K-yrs). The dependent variable is the cumulative S&P 500 value-weighted log excess return from year t to year t+K-1, corresponding to a horizon of K 

years, and the lagged persistent regressor is each of the following variables defined in Section 3 of the main body of the study: Dividend payout ratio (d/e), long-term yield (lty), 

dividend yield (d/y), dividend price ratio (d/p), T-bill rate (tbl), earnings price ratio (e/p), book-to-market value ratio (b/m), default yield spread (dfy), net equity expansion (ntis), 

term spread (tms), inflation rate (inf) and consumption-wealth ratio (cay). The table reports the long-horizon Wald statistic, defined in equation (34), under the null hypothesis that 

the slope coefficient of the long-horizon univariate predictive regression estimated via the proposed instrumental variable (IVX) approach, is equal to zero (i.e., no predictability). *, 

** and *** imply rejection of the null hypothesis at 10%, 5% and 1% level respectively. 

 

Panel A: 1927−2012 

K-yrs d/e lty d/y d/p tbl e/p b/m dfy ntis tms inf  

2 0.628 0.088 2.986* 3.882** 0.851 2.626 3.698* 0.189 6.540** 2.435 0.138  

3 0.503 0.066 2.511 3.292* 0.789 2.540 3.140* 0.117 4.821** 2.802* 0.151  

4 0.735 0.049 2.074 3.320* 0.700 2.469 3.124* 0.262 3.532* 3.135* 0.194  

5 0.640 0.026 1.882 2.997* 0.499 2.431 2.440 0.185 2.841* 2.870* 0.326  

Panel B: 1952−2012 

K-yrs d/e lty d/y d/p tbl e/p b/m dfy ntis tms inf cay 

2 3.122* 0.032 1.200 1.855 0.680 0.507 0.256 0.375 0.269 2.224 0.716 7.772*** 

3 3.151* 0.022 1.239 1.350 0.410 0.469 0.049 0.015 0.092 1.510 0.704 6.113** 

4 4.534** 0.000 1.308 1.125 0.289 0.339 0.044 0.093 0.048 1.982 0.692 5.581** 

5 3.306* 0.052 1.159 0.986 0.089 0.561 0.100 0.036 0.046 2.246 0.293 4.362** 
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Figure A1 

Power plots for sample size n=1,000 and residuals’ correlation coefficient  −0.95 

This figure shows the rejection rates for tests of the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (22) 

as the true value of A increases. The solid curve (Wald0.05) illustrates the rejection rate we get using the Wald test, defined 

in equation (19), with 5% nominal size (horizontal line). The dashed curve (CYQ0.05) illustrates the rejection rate using the 

95% confidence interval of the Campbell and Yogo (2006) Q-test. The dash-dot curve (JM0.05) illustrates the rejection rate 

using the *

0.05  statistic of Jansson and Moreira (2006). Each panel corresponds to a different local-to-unity parameter C= 

0, −5, −10, −15, −20 and −50. These rejection rates have been calculated using Monte Carlo simulations described in 

Section 2.1 with 10,000 repetitions for a sample size of n=1,000, correlation coefficient between the residuals of 

regressions (22) and (23)  −0.95 and no autocorrelation in the residuals of the autoregressive equation, i.e.,  0 in 

(24). 
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Figure A2 

Power plots for sample size n=1,000 and residuals’ correlation coefficient  −0.5 

This figure shows the rejection rates for tests of the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (22) 

as the true value of A increases. The solid curve (Wald0.05) illustrates the rejection rate we get using the Wald test, defined 

in equation (19), with 5% nominal size (horizontal line). The dashed curve (CYQ0.05) illustrates the rejection rate using the 

95% confidence interval of the Campbell and Yogo (2006) Q-test. The dash-dot curve (JM0.05) illustrates the rejection rate 

using the *

0.05  statistic of Jansson and Moreira (2006). Each panel corresponds to a different local-to-unity parameter C= 

0, −5, −10, −15, −20 and −50. These rejection rates have been calculated using Monte Carlo simulations described in 

Section 2.1 with 10,000 repetitions for a sample size of n=1,000, correlation coefficient between the residuals of 

regressions (22) and (23)  −0.5 and no autocorrelation in the residuals of the autoregressive equation, i.e.,  0 in 

(24). 
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Figure A3 

Power plots for sample size n=1,000 and residuals’ correlation coefficient  0 

This figure shows the rejection rates for tests of the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (22) 

as the true value of A increases. The solid curve (Wald0.05) illustrates the rejection rate we get using the Wald test, defined 

in equation (19), with 5% nominal size (horizontal line). The dashed curve (CYQ0.05) illustrates the rejection rate using the 

95% confidence interval of the Campbell and Yogo (2006) Q-test. The dash-dot curve (JM0.05) illustrates the rejection rate 

using the *

0.05  statistic of Jansson and Moreira (2006). Each panel corresponds to a different local-to-unity parameter C= 

0, −5, −10, −15, −20 and −50. These rejection rates have been calculated using Monte Carlo simulations described in 

Section 2.1 with 10,000 repetitions for a sample size of n=1,000, correlation coefficient between the residuals of 

regressions (22) and (23)   0 and no autocorrelation in the residuals of the autoregressive equation, i.e.,  0 in (24). 
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Figure A4 

Power plots for sample size n=250, residuals’ correlation coefficient  −0.95 and autocorrelation 

coefficient 0.5   in the residuals of the autoregression 

This figure shows the rejection rates for tests of the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (22) 

as the true value of A increases. The solid curve (Wald0.05) illustrates the rejection rate we get using the Wald test, defined 

in equation (19), with 5% nominal size (horizontal line). The dashed curve (CYQ0.05) illustrates the rejection rate using the 

95% confidence interval of the Campbell and Yogo (2006) Q-test. Each panel corresponds to a different local-to-unity 

parameter C= 0, −5, −10, −15, −20 and −50. These rejection rates have been calculated using Monte Carlo simulations 

described in Section 2.1 of the main body of the study with 10,000 repetitions for a sample size of n=250, correlation 

coefficient between the residuals of regressions (22) and (23)  −0.95 and autocorrelation coefficient  0.5 in the 

residuals of the autoregression (23). 
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Figure A5 

Power plots for sample size n=250, residuals’ correlation coefficient  −0.5 and autocorrelation 

coefficient 0.5   in the residuals of the autoregression  

This figure shows the rejection rates for tests of the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (22) 

as the true value of A increases. The solid curve (Wald0.05) illustrates the rejection rate we get using the Wald test, defined 

in equation (19), with 5% nominal size (horizontal line). The dashed curve (CYQ0.05) illustrates the rejection rate using the 

95% confidence interval of the Campbell and Yogo (2006) Q-test. Each panel corresponds to a different local-to-unity 

parameter C= 0, −5, −10, −15, −20 and −50. These rejection rates have been calculated using Monte Carlo simulations 

described in Section 2.1 of the main body of the study with 10,000 repetitions for a sample size of n=250, correlation 

coefficient between the residuals of regressions (22) and (23)  −0.5 and autocorrelation coefficient  0.5 in the 

residuals of the autoregression (23). 
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Figure A6 

Power plots for sample size n=250, residuals’ correlation coefficient  0 and autocorrelation coefficient 

0.5   in the residuals of the autoregression 

This figure shows the rejection rates for tests of the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (22) 

as the true value of A increases. The solid curve (Wald0.05) illustrates the rejection rate we get using the Wald test, defined 

in equation (19), with 5% nominal size (horizontal line). The dashed curve (CYQ0.05) illustrates the rejection rate using the 

95% confidence interval of the Campbell and Yogo (2006) Q-test. Each panel corresponds to a different local-to-unity 

parameter C= 0, −5, −10, −15, −20 and −50. These rejection rates have been calculated using Monte Carlo simulations 

described in Section 2.1 of the main body of the study with 10,000 repetitions for a sample size of n=250, correlation 

coefficient between the residuals of regressions (22) and (23)   0 and autocorrelation coefficient  0.5 in the residuals 

of the autoregression (23). 
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Figure A7 

Power plots for sample size n=1,000, residuals’ correlation coefficient  −0.95 and autocorrelation 

coefficient 0.5   in the residuals of the autoregression 

This figure shows the rejection rates for tests of the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (22) 

as the true value of A increases. The solid curve (Wald0.05) illustrates the rejection rate we get using the Wald test, defined 

in equation (19), with 5% nominal size (horizontal line). The dashed curve (CYQ0.05) illustrates the rejection rate using the 

95% confidence interval of the Campbell and Yogo (2006) Q-test. Each panel corresponds to a different local-to-unity 

parameter C= 0, −5, −10, −15, −20 and −50. These rejection rates have been calculated using Monte Carlo simulations 

described in Section 2.1 of the main body of the study with 10,000 repetitions for a sample size of n=1,000, correlation 

coefficient between the residuals of regressions (22) and (23)  −0.95 and autocorrelation coefficient  0.5 in the 

residuals of the autoregression (23). 
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Figure A8 

Power plots for sample size n=1,000, residuals’ correlation coefficient  −0.5 and autocorrelation 

coefficient 0.5   in the residuals of the autoregression  

This figure shows the rejection rates for tests of the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (22) 

as the true value of A increases. The solid curve (Wald0.05) illustrates the rejection rate we get using the Wald test, defined 

in equation (19), with 5% nominal size (horizontal line). The dashed curve (CYQ0.05) illustrates the rejection rate using the 

95% confidence interval of the Campbell and Yogo (2006) Q-test. Each panel corresponds to a different local-to-unity 

parameter C= 0, −5, −10, −15, −20 and −50. These rejection rates have been calculated using Monte Carlo simulations 

described in Section 2.1 of the main body of the study with 10,000 repetitions for a sample size of n=1,000, correlation 

coefficient between the residuals of regressions (22) and (23)  −0.5 and autocorrelation coefficient  0.5 in the 

residuals of the autoregression (23). 
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Figure A9 

Power plots for sample size n=1,000, residuals’ correlation coefficient  0 and autocorrelation 

coefficient 0.5   in the residuals of the autoregression  

This figure shows the rejection rates for tests of the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (22) 

as the true value of A increases. The solid curve (Wald0.05) illustrates the rejection rate we get using the Wald test, defined 

in equation (19), with 5% nominal size (horizontal line). The dashed curve (CYQ0.05) illustrates the rejection rate using the 

95% confidence interval of the Campbell and Yogo (2006) Q-test. Each panel corresponds to a different local-to-unity 

parameter C= 0, −5, −10, −15, −20 and −50. These rejection rates have been calculated using Monte Carlo simulations 

described in Section 2.1 of the main body of the study with 10,000 repetitions for a sample size of n=1,000, correlation 

coefficient between the residuals of regressions (22) and (23)   0 and autocorrelation coefficient  0.5 in the residuals 

of the autoregression (23). 
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Figure A10 

Power plots for sample size n=250 and residuals’ correlation coefficient  −0.95 using different kernels 

for the estimation of the long−run covariance matrix  

This figure shows the rejection rates for tests of the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (22) 

as the true value of A increases. The solid curve (Wald0.05, Bartlett) illustrates the rejection rate we get using the Wald test, 

defined in equation (19), with 5% nominal size (horizontal line), when the Bartlett kernel is used to estimate the long-run 

covariance matrix (à la Newey-West). The dashed curve (Wald0.05, Parzen) shows the corresponding rejection rate using the 

Parzen kernel, while the dotted curve (Wald0.05, QS) shows the corresponding rejection rate using the Quadratic Spectral 

kernel. Each panel corresponds to a different local-to-unity parameter C= 0, −5, −10, −15, −20 and −50. These rejection 

rates have been calculated using Monte Carlo simulations described in Section 2.1 of the main body of the study with 

10,000 repetitions for a sample size of n=250, correlation coefficient between the residuals of regressions (22) and (23) 

 −0.95 and autocorrelation coefficient  0 in the residuals of the autoregression (23). 

 

 

 

 

 



43 
 

Figure A11 

Power plots for sample size n=250 and residuals’ correlation coefficient  −0.5 using different kernels 

for the estimation of the long-run covariance matrix  

This figure shows the rejection rates for tests of the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (22) 

as the true value of A increases. The solid curve (Wald0.05, Bartlett) illustrates the rejection rate we get using the Wald test, 

defined in equation (19), with 5% nominal size (horizontal line), when the Bartlett kernel is used to estimate the long-run 

covariance matrix (à la Newey-West). The dashed curve (Wald0.05, Parzen) shows the corresponding rejection rate using the 

Parzen kernel, while the dotted curve (Wald0.05, QS) shows the corresponding rejection rate using the Quadratic Spectral 

kernel. Each panel corresponds to a different local-to-unity parameter C= 0, −5, −10, −15, −20 and −50. These rejection 

rates have been calculated using Monte Carlo simulations described in Section 2.1 of the main body of the study with 

10,000 repetitions for a sample size of n=250, correlation coefficient between the residuals of regressions (22) and (23) 

 −0.5 and autocorrelation coefficient  0 in the residuals of the autoregression (23). 
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Figure A12 

Power plots for sample size n=250 and residuals’ correlation coefficient  0 using different kernels for 

the estimation of the long-run covariance matrix  

This figure shows the rejection rates for tests of the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (22) 

as the true value of A increases. The solid curve (Wald0.05, Bartlett) illustrates the rejection rate we get using the Wald test, 

defined in equation (19), with 5% nominal size (horizontal line), when the Bartlett kernel is used to estimate the long-run 

covariance matrix (à la Newey-West). The dashed curve (Wald0.05, Parzen) shows the corresponding rejection rate using the 

Parzen kernel, while the dotted curve (Wald0.05, QS) shows the corresponding rejection rate using the Quadratic Spectral 

kernel. Each panel corresponds to a different local-to-unity parameter C= 0, −5, −10, −15, −20 and −50. These rejection 

rates have been calculated using Monte Carlo simulations described in Section 2.1 of the main body of the study with 

10,000 repetitions for a sample size of n=250, correlation coefficient between the residuals of regressions (22) and (23) 

  0 and autocorrelation coefficient  0 in the residuals of the autoregression (23). 
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Figure A13 

Power plots for sample size n=250 and residuals’ correlation coefficient  −0.95 using different number 

of lags in the Bartlett kernel for the estimation of the long-run covariance matrix 

This figure shows the rejection rates for tests of the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (22) 

as the true value of A increases. The solid curve (Wald0.05, a=1/4) illustrates the rejection rate we get using the Wald test, 

defined in equation (19), with 5% nominal size (horizontal line), when the lag length in the Bartlett kernel used to estimate 

the long-run covariance matrix is equal to n
1/4

. The dashed curve (Wald0.05, a=1/3) shows the corresponding rejection rate 

when the lag length is equal to n
1/3

, while the dotted curve (Wald0.05, a=1/2) shows the corresponding rejection rate when the 

lag length is equal to n
1/2

. Each panel corresponds to a different local-to-unity parameter C= 0, −5, −10, −15, −20 and −50. 

These rejection rates have been calculated using Monte Carlo simulations described in Section 2.1 of the main body of the 

study with 10,000 repetitions for a sample size of n=250, correlation coefficient between the residuals of regressions (22) 

and (23)  −0.95 and autocorrelation coefficient  0 in the residuals of the autoregression (23). 
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Figure A14 

Power plots for sample size n=250 and residuals’ correlation coefficient  −0.5 using different number 

of lags in the Bartlett kernel for the estimation of the long-run covariance matrix 

This figure shows the rejection rates for tests of the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (22) 

as the true value of A increases. The solid curve (Wald0.05, a=1/4) illustrates the rejection rate we get using the Wald test, 

defined in equation (19), with 5% nominal size (horizontal line), when the lag length in the Bartlett kernel used to estimate 

the long-run covariance matrix is equal to n
1/4

. The dashed curve (Wald0.05, a=1/3) shows the corresponding rejection rate 

when the lag length is equal to n
1/3

, while the dotted curve (Wald0.05, a=1/2) shows the corresponding rejection rate when the 

lag length is equal to n
1/2

. Each panel corresponds to a different local-to-unity parameter C= 0, −5, −10, −15, −20 and −50. 

These rejection rates have been calculated using Monte Carlo simulations described in Section 2.1 of the main body of the 

study with 10,000 repetitions for a sample size of n=250, correlation coefficient between the residuals of regressions (22) 

and (23)  −0.5 and autocorrelation coefficient  0 in the residuals of the autoregression (23). 
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Figure A15 

Power plots for sample size n=250 and residuals’ correlation coefficient  0 using different number of 

lags in the Bartlett kernel for the estimation of the long-run covariance matrix  

This figure shows the rejection rates for tests of the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (22) 

as the true value of A increases. The solid curve (Wald0.05, a=1/4) illustrates the rejection rate we get using the Wald test, 

defined in equation (19), with 5% nominal size (horizontal line), when the lag length in the Bartlett kernel used to estimate 

the long-run covariance matrix is equal to n
1/4

. The dashed curve (Wald0.05, a=1/3) shows the corresponding rejection rate 

when the lag length is equal to n
1/3

, while the dotted curve (Wald0.05, a=1/2) shows the corresponding rejection rate when the 

lag length is equal to n
1/2

. Each panel corresponds to a different local-to-unity parameter C= 0, −5, −10, −15, −20 and −50. 

These rejection rates have been calculated using Monte Carlo simulations described in Section 2.1 of the main body of the 

study with 10,000 repetitions for a sample size of n=250, correlation coefficient between the residuals of regressions (22) 

and (23)   0 and autocorrelation coefficient  0 in the residuals of the autoregression (23). 
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Figure A16 

Rejection rates for sample size n=500 and residuals’ correlation coefficient  −0.95 using different 

values of   for the construction of the instrumental variable  

This figure shows the rejection rates for tests of the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (22) 

using different values of β for the construction of the instrumental variable defined in (5). The solid line (Wald0.05, A=0) 

presents the rejection rates we get using the Wald test defined in equation (19) with 5% nominal size, when the true value 

of A is zero, corresponding to the size of the test. The dotted curve (Wald0.05, A=0.02) presents the corresponding rejection 

rates when A=0.02, the dashed curve (Wald0.05, A=0.04) presents the corresponding rejection rates when A=0.04 and the dash-

dot curve (Wald0.05, A=0.06) presents the corresponding rejection rates when A=0.06. Each panel corresponds to a different 

local-to-unity parameter C= 0, −5, −10, −15, −20 and −50. These rejection rates have been calculated using Monte Carlo 

simulations described in Section 2.1 of the main body of the study with 10,000 repetitions for a sample size of n=500, 

correlation coefficient between the residuals of regressions (22) and (23)  −0.95 and autocorrelation coefficient  0 

in the residuals of the autoregression (23). 
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Figure A17 

Rejection rates for sample size n=500 and residuals’ correlation coefficient  −0.5 using different 

values of   for the construction of the instrumental variable  

This figure shows the rejection rates for tests of the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (22) 

using different values of β for the construction of the instrumental variable defined in (5). The solid line (Wald0.05, A=0) 

presents the rejection rates we get using the Wald test defined in equation (19) with 5% nominal size, when the true value 

of A is zero, corresponding to the size of the test. The dotted curve (Wald0.05, A=0.02) presents the corresponding rejection 

rates when A=0.02, the dashed curve (Wald0.05, A=0.04) presents the corresponding rejection rates when A=0.04 and the dash-

dot curve (Wald0.05, A=0.06) presents the corresponding rejection rates when A=0.06. Each panel corresponds to a different 

local-to-unity parameter C= 0, −5, −10, −15, −20 and −50. These rejection rates have been calculated using Monte Carlo 

simulations described in Section 2.1 of the main body of the study with 10,000 repetitions for a sample size of n=500, 

correlation coefficient between the residuals of regressions (22) and (23)  −0.5 and autocorrelation coefficient  0 in 

the residuals of the autoregression (23). 
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Figure A18 

Rejection rates for sample size n=500 and residuals’ correlation coefficient  0 using different values of 

  for the construction of the instrumental variable  

This figure shows the rejection rates for tests of the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (22) 

using different values of β for the construction of the instrumental variable defined in (5). The solid line (Wald0.05, A=0) 

presents the rejection rates we get using the Wald test defined in equation (19) with 5% nominal size, when the true value 

of A is zero, corresponding to the size of the test. The dotted curve (Wald0.05, A=0.02) presents the corresponding rejection 

rates when A=0.02, the dashed curve (Wald0.05, A=0.04) presents the corresponding rejection rates when A=0.04 and the dash-

dot curve (Wald0.05, A=0.06) presents the corresponding rejection rates when A=0.06. Each panel corresponds to a different 

local-to-unity parameter C= 0, −5, −10, −15, −20 and −50. These rejection rates have been calculated using Monte Carlo 

simulations described in Section 2.1 of the main body of the study with 10,000 repetitions for a sample size of n=500, 

correlation coefficient between the residuals of regressions (22) and (23)   0 and autocorrelation coefficient  0 in the 

residuals of the autoregression (23). 
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Figure A19 

Power plots using a conditionally heteroskedastic DGP for stock returns, for sample size n=1,000 and 

residuals’ correlation coefficient  −0.95   

This figure shows the rejection rates for tests of the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (34) 

of the Online Appendix as the true value of A increases, when the DGP for stock returns is conditionally heteroskedastic. 

In particular, the residuals of the predictive regression for stock returns are conditionally heteroskedastic, following a 

GARCH (1,1) process. The employed parameter values are derived from fitting a GARCH (1,1) to the residuals estimated 

from regressing S&P 500 value-weighted log excess returns on dividend yield, using monthly data for the period 

1927−2012. The solid curve (Wald0.05) illustrates the rejection rate we get using the Wald test, defined in equation (19), 

with 5% nominal size (horizontal line). The dashed curve (CYQ0.05) illustrates the rejection rate using the 95% confidence 

interval of the Campbell and Yogo (2006) Q-test. Each panel corresponds to a different local-to-unity parameter C= 0, −5, 

−10, −15, −20 and −50. These rejection rates have been calculated using Monte Carlo simulations described in Section 2.7 

of the Online Appendix with 10,000 repetitions for a sample size of n=1,000, correlation coefficient between the residuals 

 −0.95 and no autocorrelation ( 0) in the residuals of the autoregression. 
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Figure A20 

Power plots using a conditionally heteroskedastic DGP for stock returns, for sample size n=1,000 and 

residuals’ correlation coefficient  −0.5 

This figure shows the rejection rates for tests of the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (34) 

of the Online Appendix as the true value of A increases, when the DGP for stock returns is conditionally heteroskedastic. 

In particular, the residuals of the predictive regression for stock returns are conditionally heteroskedastic, following a 

GARCH (1,1) process. The employed parameter values are derived from fitting a GARCH (1,1) process to the residuals 

estimated from regressing S&P 500 value-weighted log excess returns on dividend yield, using monthly data for the period 

1927−2012. The solid curve (Wald0.05) illustrates the rejection rate we get using the Wald test, defined in equation (19), 

with 5% nominal size (horizontal line). The dashed curve (CYQ0.05) illustrates the rejection rate using the 95% confidence 

interval of the Campbell and Yogo (2006) Q-test. Each panel corresponds to a different local-to-unity parameter C= 0, −5, 

−10, −15, −20 and −50. These rejection rates have been calculated using Monte Carlo simulations described in Section 2.7 

of the Online Appendix with 10,000 repetitions for a sample size of n=1,000, correlation coefficient between the residuals 

 −0.5 and no autocorrelation ( 0) in the residuals of the autoregression. 
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Figure A21 

Power plots using a conditionally heteroskedastic DGP for stock returns, for sample size n=1,000 and 

residuals’ correlation coefficient  0 

This figure shows the rejection rates for tests of the null hypothesis 
0 : 0H A   versus the alternative 

1 : 0H A   in (34) 

of the Online Appendix as the true value of A increases, when the DGP for stock returns is conditionally heteroskedastic. 

In particular, the residuals of the predictive regression for stock returns are conditionally heteroskedastic, following a 

GARCH (1,1) process. The employed parameter values are derived from fitting a GARCH (1,1) process to the residuals 

estimated from regressing S&P 500 value-weighted log excess returns on dividend yield, using monthly data for the period 

1927−2012. The solid curve (Wald0.05) illustrates the rejection rate we get using the Wald test, defined in equation (19), 

with 5% nominal size (horizontal line). The dashed curve (CYQ0.05) illustrates the rejection rate using the 95% confidence 

interval of the Campbell and Yogo (2006) Q-test. Each panel corresponds to a different local-to-unity parameter C= 0, −5, 

−10, −15, −20 and −50. These rejection rates have been calculated using Monte Carlo simulations described in Section 2.7 

of the Online Appendix with 10,000 repetitions for a sample size of n=1,000, correlation coefficient between the residuals 

  0 and no autocorrelation ( 0) in the residuals of the autoregression. 
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Figure A22 

Power plots for long−horizon Wald test, sample size n=1,000 and residuals’ correlation coefficient  =−0.95 
This figure shows the rejection rates, derived from K-horizon univariate predictive regressions as in equation (30), for tests of 

the null hypothesis 
0 : 0H A   in the DGP (22), as the true value of A increases. The solid curve (Wald0.05, K=12) illustrates the 

rejection rate we get using the long-horizon Wald test, defined in equation (34), with 5% nominal size (horizontal line), when 

the predictive horizon is K=12. The dotted curve (Wald0.05, K=36) illustrates the corresponding rejection rate when the horizon is 

K=36. The dashed curve (Wald0.05, K=60) illustrates the corresponding rejection rate when the horizon is K=60. Each panel 

corresponds to a different local-to-unity parameter C= 0, −5, −10, −15, −20 and −50. These rejection rates have been 

calculated using Monte Carlo simulations described in Section 5.2 with 10,000 repetitions for a sample size of n=1,000, 

correlation coefficient between the residuals of regressions (22) and (23)  −0.95 and no autocorrelation in the residuals of 

the autoregressive equation, i.e.,  0 in (24). 
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Figure A23 

Power plots for long−horizon Wald test, sample size n=1,000 and residuals’ correlation coefficient  =−0.5 
This figure shows the rejection rates, derived from K-horizon univariate predictive regressions as in equation (30), for tests of 

the null hypothesis 
0 : 0H A   in the DGP (22), as the true value of A increases. The solid curve (Wald0.05, K=12) illustrates the 

rejection rate we get using the long-horizon Wald test, defined in equation (34), with 5% nominal size (horizontal line), when 

the predictive horizon is K=12. The dotted curve (Wald0.05, K=36) illustrates the corresponding rejection rate when the horizon is 

K=36. The dashed curve (Wald0.05, K=60) illustrates the corresponding rejection rate when the horizon is K=60. Each panel 

corresponds to a different local-to-unity parameter C= 0, −5, −10, −15, −20 and −50. These rejection rates have been 

calculated using Monte Carlo simulations described in Section 5.2 with 10,000 repetitions for a sample size of n=1,000, 

correlation coefficient between the residuals of regressions (22) and (23)  −0.5 and no autocorrelation in the residuals of 

the autoregressive equation, i.e.,  0 in (24). 
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Figure A24 

Power plots for long−horizon Wald test, sample size n=1,000 and residuals’ correlation coefficient  =0 
This figure shows the rejection rates, derived from K-horizon univariate predictive regressions as in equation (30), for tests of 

the null hypothesis 
0 : 0H A   in the DGP (22), as the true value of A increases. The solid curve (Wald0.05, K=12) illustrates the 

rejection rate we get using the long-horizon Wald test, defined in equation (34), with 5% nominal size (horizontal line), when 

the predictive horizon is K=12. The dotted curve (Wald0.05, K=36) illustrates the corresponding rejection rate when the horizon is 

K=36. The dashed curve (Wald0.05, K=60) illustrates the corresponding rejection rate when the horizon is K=60. Each panel 

corresponds to a different local-to-unity parameter C= 0, −5, −10, −15, −20 and −50. These rejection rates have been 

calculated using Monte Carlo simulations described in Section 5.2 with 10,000 repetitions for a sample size of n=1,000, 

correlation coefficient between the residuals of regressions (22) and (23)  0 and no autocorrelation in the residuals of the 

autoregressive equation, i.e.,  0 in (24). 
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Figure A25 

Power plots for long−horizon Wald test, sample size n=500 and residuals’ correlation coefficient  =−0.95 
This figure shows the rejection rates, derived from K-horizon univariate predictive regressions as in equation (30), for tests of 

the null hypothesis 
0 : 0H A   in the DGP (22), as the true value of A increases. The solid curve (Wald0.05, K=4) illustrates the 

rejection rate we get using the long-horizon Wald test, defined in equation (34), with 5% nominal size (horizontal line), when 

the predictive horizon is K=4. The dotted curve (Wald0.05, K=12) illustrates the corresponding rejection rate when the horizon is 

K=12. The dashed curve (Wald0.05, K=20) illustrates the corresponding rejection rate when the horizon is K=20. Each panel 

corresponds to a different local-to-unity parameter C= 0, −5, −10, −15, −20 and −50. These rejection rates have been 

calculated using Monte Carlo simulations described in Section 5.2 of the main body of the study with 10,000 repetitions for a 

sample size of n=500, correlation coefficient between the residuals of regressions (22) and (23) in the main body of the study 

 −0.95 and no autocorrelation in the residuals of the autoregressive equation, i.e.,  0 in (24). 
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Figure A26 

Power plots for long−horizon Wald test, sample size n=500 and residuals’ correlation coefficient  =−0.5 
This figure shows the rejection rates, derived from K-horizon univariate predictive regressions as in equation (30), for tests of 

the null hypothesis 
0 : 0H A   in the DGP (22), as the true value of A increases. The solid curve (Wald0.05, K=4) illustrates the 

rejection rate we get using the long-horizon Wald test, defined in equation (34), with 5% nominal size (horizontal line), when 

the predictive horizon is K=4. The dotted curve (Wald0.05, K=12) illustrates the corresponding rejection rate when the horizon is 

K=12. The dashed curve (Wald0.05, K=20) illustrates the corresponding rejection rate when the horizon is K=20. Each panel 

corresponds to a different local-to-unity parameter C= 0, −5, −10, −15, −20 and −50. These rejection rates have been 

calculated using Monte Carlo simulations described in Section 5.2 of the main body of the study with 10,000 repetitions for a 

sample size of n=500, correlation coefficient between the residuals of regressions (22) and (23) in the main body of the study 

 −0.5 and no autocorrelation in the residuals of the autoregressive equation, i.e.,  0 in (24). 
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Figure A27 

Power plots for long−horizon Wald test, sample size n=500 and residuals’ correlation coefficient  =0 
This figure shows the rejection rates, derived from K-horizon univariate predictive regressions as in equation (30), for tests of 

the null hypothesis 
0 : 0H A   in the DGP (22), as the true value of A increases. The solid curve (Wald0.05, K=4) illustrates the 

rejection rate we get using the long-horizon Wald test, defined in equation (34), with 5% nominal size (horizontal line), when 

the predictive horizon is K=4. The dotted curve (Wald0.05, K=12) illustrates the corresponding rejection rate when the horizon is 

K=12. The dashed curve (Wald0.05, K=20) illustrates the corresponding rejection rate when the horizon is K=20. Each panel 

corresponds to a different local-to-unity parameter C= 0, −5, −10, −15, −20 and −50. These rejection rates have been 

calculated using Monte Carlo simulations described in Section 5.2 of the main body of the study with 10,000 repetitions for a 

sample size of n=500, correlation coefficient between the residuals of regressions (22) and (23) in the main body of the study 

 0 and no autocorrelation in the residuals of the autoregressive equation, i.e.,  0 in (24). 

 

 

 


