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Abstract

In this paper, we present a general method which can be used in order to show that
the maximum likelihood estimator (MLE) of an exponential mean θ is stochastically
increasing with respect to θ under different censored sampling schemes. This propery
is essential for the construction of exact confidence intervals for θ via “pivoting the
cdf” as well as for the tests of hypotheses about θ. The method is shown for Type-
I censoring, hybrid censoring and generalized hybrid censoring schemes. We also
establish the result for the exponential competing risks model with censoring.
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1 Introduction

A standard method for constructing exact confidence intervals for a real parameter θ

based on a statistic θ̂ is “pivoting the cdf”, or, equivalently, the survival function; see,

for example, Casella and Berger (2002, p. 432). The method is applicable as long as θ̂

is stochastically monotone with respect to θ, that is, Pθ(θ̂ > x) is a monotone function

of θ for all x. Assuming without loss of generality that it is increasing, the method then

proceeds as follows: Choose α1 and α2 such that α1+α2 = α (for example, α1 = α2 = α/2)

and solve the equations Pθ(θ̂ > θ̂obs) = α1, Pθ(θ̂ > θ̂obs) = 1 − α2 for θ. Here, θ̂obs is the

observed value of θ̂ determined from the given sample. The existence and uniqueness of

the solutions of these equations are then guaranteed by the monotonicity of Pθ(θ̂ > θ̂obs)
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with respect to θ. Denote by θL(θ̂obs) < θU (θ̂obs) these solutions. Then, [θL(θ̂obs), θU (θ̂obs)]

is the realization of an exact 100(1 − α)% confidence interval for the parameter θ.

Obviously, the stochastic monotonicity of θ̂ with respect to θ is crucial in the above

construction. However, in the literature, a series of papers have been published construct-

ing exact confidence intervals for the parameters of interest by assuming the stochastic

monotonicity of the corresponding MLEs and not being able to show it theoretically but

only observing it empirically. In particular, Chen and Bhattacharyya (1988), Childs et

al. (2003), and Chandrasekar et al. (2004) derived the MLE of the exponential mean θ as

well as its distribution for different censoring schemes, but they did not provide a formal

proof that these MLEs are stochastically increasing with respect to the parameter θ. In

all these cases, the survival function of the MLE takes on a mixture form

Pθ(θ̂ > x) =
∑

d∈D

Pθ(D = d)Pθ(θ̂ > x|D = d), (1)

where D is a finite set. They all conjectured that the MLEs are stochastically increasing

and supported it by presenting numerical results for some special cases. They then pro-

ceeded to the construction of exact confidence limits by “pivoting the survival function”.

In this paper, we formally prove that these conjectures are indeed true thus validating the

exact inferential procedures developed by all these authors.

Another useful need for the stochastic monotonicity of the MLE is in the context of

hypothesis testing. Suppose we want to test H0 : θ 6 θ0 versus H1 : θ > θ0. It is natural

to consider tests of the form θ̂ > Cα(θ0), where Cα(θ0) denotes the upper α-quantile of

the distribution of θ̂ at θ0. However, in order for such a test to have desirable properties

such as unbiasedness and monotone power function, the MLE θ̂ should be stochastically

increasing in θ.

This paper is organized as follows. In Section 2, we present a lemma providing three

conditions which together are sufficient for a survival function of the form in (1) to be

increasing in θ. In other words, successive verification of these conditions would imply

that θ̂ is stochastically increasing in θ. In the subsequent sections, we apply this lemma in

different censoring scenarios from an exponential distribution. In Section 3, we consider

the case of the usual Type-I censoring as an illustrative example, since the application of

the lemma in this case is quite straightforward. Moreover, this particular result will be

used repeatedly in the sequel. In Section 4, we prove the stochastic monotonicity of the

MLE under hybrid censoring, while in Section 5 we establish the result for generalized

hybrid censoring. Section 6 summarizes the results and discusses some other potential

applications of our approach. In addition, we prove in this section the stochastic mono-

tonicity of the MLE in the setting of exponential competing risks, a result conjectured
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earlier by Kundu and Basu (2000). Finally, the technical results needed for verifying the

conditions of the basic lemma are presented in an Appendix.

2 The basic lemma

Suppose that the survival function of θ̂ has the form in (1). Then, the following lemma

holds.

Lemma 2.1. [Three Monotonicities Lemma] Assume that the following hold true:

(M1) For all d ∈ D, the conditional distribution of θ̂, given D = d, is stochastically

increasing in θ, i.e., the function Pθ(θ̂ > x|D = d) is increasing in θ for all x and

d ∈ D;

(M2) For all x and θ > 0, the conditional distribution of θ̂, given D = d, is stochastically

decreasing in d, i.e., the function Pθ(θ̂ > x|D = d) is decreasing in d ∈ D;

(M3) D is stochastically decreasing in θ.

Then, θ̂ is stochastically increasing in θ.

Proof. It is well-known that if X 6st Y , where “6st” means stochastically smaller, then

for any integrable decreasing function g we have E{g(X)} > E{g(Y )}; see Shaked and

Shanthikumar (2007). Therefore, under the assumptions of the lemma, for any θ < θ ′,

Pθ(θ̂ > x) =
∑

d∈D

Pθ(D = d)Pθ(θ̂ > x|D = d)

6
∑

d∈D

Pθ′(D = d)Pθ(θ̂ > x|D = d) (by M2 and M3)

6
∑

d∈D

Pθ′(D = d)Pθ′(θ̂ > x|D = d) (by M1)

= Pθ′(θ̂ > x)

as required.

Hence, a proof of the stochastic monotonicity of θ̂ with respect to θ may be completed

in three steps, that is, establishing the three conditions of Lemma 2.1. We will refer to

the above lemma as TML (Three Monotonicities Lemma) in the sequel.

3 Type-I censoring

Type-I censoring is the most practical type of censoring in that the duration of the ex-

periment is fixed in advance by the experimenter. Specifically, let T > 0 be a fixed time
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and let X1, . . . , Xn be iid random variables from an exponential distribution E(θ), θ > 0.

Suppose that the life-test is terminated at time T , and D denotes the number of observed

failures. Clearly, D is a random variable. By writing down the likelihood, it can be easily

seen that the MLE of θ does not exist if D = 0. Hence, in order to make inference about

θ, we must condition on the event D > 1. In this case, the MLE of θ is

θ̂ =
1

D

{ D
∑

i=1

Xi:n + (n − D)T

}

. (2)

The conditional distribution of θ̂, given D > 1, has been explicitly derived by Bar-

tholomew (1963). He then found the mean and the variance of this distribution and used

them in order to make asymptotic inference for θ via the Central Limit Theorem. Later

on, Spurrier and Wei (1980) used this conditional distribution in order to make exact

inference for θ. They stated that “it can be shown that Pθ(θ̂ > c) is an increasing function

of θ”, but did not present a proof. The result was formally proved by Balakrishnan et

al. (2002) by using a coupling argument.

Conditional on D > 1, the survival function of the MLE can be expressed as

Pθ(θ̂ > x) =

n
∑

d=1

Pθ(D = d|D > 1)Pθ(θ̂ > x|D = d), (3)

and so it has the form in (1) with D = {1, . . . , n}. Of course, (3) coincides with the ex-

pression of Bartholomew (1963), although this is not clear at first glance. Below, we prove

once more the stochastic monotonicity of θ̂ with respect to θ using TML. Its application

is rather straightforward in this case, and so it will also serve as an illustrative example.

Moreover, this result will be used repeatedly in the following sections. Now, we proceed

to the verification of the three monotonicities.

(M1) Recall that we have to show that the conditional distribution of θ̂, given D = d, is

stochastically increasing in θ. To this end, note that conditional on D = d, (X1:n, . . . , Xd:n)

have the same distribution as (Z1:d, . . . , Zd:d), where Z1, . . . , Zd
iid
∼ E(θ)I(Z 6 T ), i.e.,

exponential with parameter θ but right truncated at T ; see Arnold et al. (1992). Hence,

conditional on D = d,
∑D

i=1 Xi:n
d
=

∑d
i=1 Zi:d ≡

∑d
i=1 Zi. Since the right truncated

exponential distribution is stochastically increasing in θ and Zi’s are independent, the

required monotonicity follows immediately.

(M2) Next, we have to prove that the conditional distribution of θ̂, given D = d, is

stochastically decreasing in d. This will be done via standard coupling. For any d ∈

{1, . . . , n − 1}, let Z1, . . . , Zd, Zd+1 be iid from E(θ)I(Z 6 T ). Then,

θ̂|(D = d) has the same distribution as
1

d

{ d
∑

i=1

Zi + (n − d)T

}
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while

θ̂|(D = d + 1) has the same distribution as
1

d + 1

{ d+1
∑

i=1

Zi + (n − d − 1)T

}

.

But,

1

d

{ d
∑

i=1

Zi + (n − d)T

}

−
1

d + 1

{ d+1
∑

i=1

Zi + (n − d − 1)T

}

=

∑d
i=1 Zi + (n − d)T + d(T − Zd+1)

d(d + 1)
> 0,

which implies that Pθ(θ̂ > x|D = d) > Pθ(θ̂ > x|D = d + 1) for all x, θ > 0.

(M3) Finally, we should verify that D is stochastically decreasing in θ. However, this is

a consequence of the fact that D has the monotone likelihood ratio property with respect

to θ. This is proven in Lemma A.2(a) (with D,T in the place of D1, T1).

Thus follows the monotonicity of the conditional survival function of the MLE in (3)

for the case of Type-I censoring.

4 Hybrid censoring

4.1 Type-I hybrid censoring

Suppose there are n identical units under test, and that T > 0 and r ∈ {1, . . . , n} are

fixed. In this particular sampling scheme, the life-test stops at the random time T ∗
1 =

min{Xr:n, T}. The scheme was introduced first by Epstein (1954). By assuming that the

lifetimes X1, . . . , Xn are from the exponential distribution E(θ), he found the MLE as

θ̂ =



























1

D

{ D
∑

i=1

Xi:n + (n − D)T

}

, if D = 1, . . . , r − 1,

1

r

{ r
∑

i=1

Xi:n + (n − r)Xr:n

}

, if D = r, . . . , n,

(4)

where again D = #{X’s 6 T}. Chen and Bhattacharyya (1988) derived the exact distri-

bution of the MLE of θ, but this was in a very complicated form. It was simplified later

by Childs et al. (2003) who termed this sampling scheme “Type-I hybrid censoring” since

it shares with standard Type-I censoring the feature that the total time under test is no

more than the pre-fixed time T . As mentioned earlier, in both these papers, the authors

were not able to prove the stochastic monotonicity of the MLE with respect to θ. Here,

we shall prove this result using TML.
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(M1) As already mentioned in the case of Type-I censoring, conditional on D = d,

(X1:n, . . . , Xd:n) has the same distribution as the order statistics (Z1:d, . . . , Zd:d) in a sample

of size d from the right truncated exponential distribution E(θ)I(Z 6 T ). Thus, for any

x ∈ R,

Pθ(θ̂ > x|D = d) = Pθ(w0 +
∑d

i=1 wdZi:d > x),

where w1 = · · · = wd = 1/d and w0 = (n − d)T/d for d < r, and w1 = · · · = wr−1 = 1/r,

wr = (n − r + 1)/r, w0 = wr+1 = · · · = wd = 0, for d > r. Since E(θ)I(Z 6 T ) is

stochastically increasing in θ, the result follows from Lemma B.1.

(M2) For d 6 r − 2, the result is the same as that in Section 3. For d = r − 1, let

Z1, . . . , Zr be iid observations from E(θ)I(Z 6 T ). Then,

θ̂|(D = r − 1)
d
=

1

r − 1

{ r−1
∑

i=1

Zi + (n − r + 1)T

}

and

θ̂|(D = r)
d
=

1

r

{ r
∑

i=1

Zr + (n − r)Zr:r

}

.

Now,

1

r − 1

{ r−1
∑

i=1

Zi + (n − r + 1)T

}

−
1

r

{ r
∑

i=1

Zr + (n − r)Zr:r

}

=

∑r
i=1 Zi + r(Zr:r − Zr) + (n − r)Zr:r + r(n − r + 1)(T − Zr:r)

r(r − 1)
> 0,

which implies the result. Finally, for d > r, the result is obtained by applying Lemma B.2.

(M3) The distribution of D is the same as in Section 3.

Thus follows the monotonicity of the conditional survival function of the MLE in (4)

for the case of Type-I hybrid censoring.

4.2 Type-II hybrid censoring

In Type-I hybrid censoring, there is a possibility of observing no failures at all. For that

reason, Childs et al. (2003) proposed an alternative sampling scheme wherein the life-test

terminates at the random time T ∗
2 = max{Xr:n, T}. This guarantees that at least r failures

will be observed. In this case, the MLE of θ is given by

θ̂ =



























1

r

{ r
∑

i=1

Xi:n + (n − r)Xr:n

}

, if D = 0, 1, . . . , r − 1,

1

D

{ D
∑

i=1

Xi:n + (n − D)T

}

, if D = r, r + 1, . . . , n.

(5)
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Note here that the MLE is always defined, and so D = {0, 1, . . . , n}.

We now proceed to establishing the stochastic monotonicity of θ̂ via TML.

(M1) For d > r, the stochastic monotonicity of θ̂, given D = d, has already been proved in

Section 3. In order to prove it for d < r, use Lemma B.4 to get that, conditional on D = d,

(X1:n, . . . , Xd:n) and (Xd+1:n, . . . , Xr:n) are independent. This implies that, conditional

on D = d,
∑d

i=1 Xd:n and
∑r

i=d+1 Xi:n + (n − r)Xr:n are also independent. Moreover,

conditional on D = d, (X1:n, . . . , Xd:n) has the same distribution as the order statistics in

a sample of size d from the right-truncated exponential distribution E(θ)I(X 6 T ) and

(Xd+1:n, . . . , Xr:n) has the same distribution as the first r − d order statistics in a sample

of size n − d from the left-truncated exponential distribution E(θ)I(X > T ). Since both

these distributions are stochastically increasing in θ, the stochastic monotonicity of both

sums with respect to θ follows from Lemma B.1. By their independence, their sum inherits

the stochastic monotonicity.

(M2) For d > r, the situation is the same as in the Type-I censoring case. In order to

prove it for d = r − 1, let Z1, . . . , Zr be iid random variables from the right-truncated

exponential distribution E(θ)I(Z 6 T ) and Y an independent random variable having the

same distribution as the minimum in a sample of size n − r + 1 from the left-truncated

exponential distribution E(θ)I(Z > T ). (This is in fact the conditional distribution of

Xr:n given d = r − 1.) Then,

θ̂|(D = r − 1)
d
=

1

r

{ r−1
∑

i=1

Zi + (n − r + 1)Y

}

and

θ̂|(D = r)
d
=

1

r

{ r
∑

i=1

Zr + (n − r)T

}

.

But,

{ r−1
∑

i=1

Zi + (n − r + 1)Y

}

−

{ r
∑

i=1

Zr + (n − r)T

}

= (n − r)(Y − T ) + Y − Zr > 0

with probability one, since Y > T > Zr with probability one.

Finally, let us consider the case d 6 r − 2. Let Z1, . . . , Zd+1
iid
∼ E(θ)I(Z 6 T ) and
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W1, . . . ,Wr−d
iid
∼ E(θ), independent of Z’s. Then, we have

θ̂|(D = d) =
1

r

{ r
∑

i=1

Xi:n + (n − r)Xr:n

}

=
1

r

{ d
∑

i=1

Xi:n + (n − d)T +

r
∑

i=d+1

(Xi:n − T ) + (n − r)(Xr:n − T )}

}

d
=

1

r

{ d
∑

i=1

Zi + (n − d)T +

r−d
∑

i=1

Wi

}

.

The sum of W ’s appears above since conditional on D = d, (Xd+1:n −T, . . . ,Xr:n −T ) has

the same distribution as the first r− d order statistics in a sample of size n− d from E(θ),

and that
∑r−d

i=1 Wi:n−d + {(n− d)− (r − d)}Wr:n follows a gamma distribution G(r − d, θ).

Similarly,

θ̂|(D = d + 1)
d
=

1

r

{ d+1
∑

i=1

Zi + (n − d − 1)T +

r−d−1
∑

i=1

Wi

}

.

Taking their difference (and omitting 1/r), we get

{ d
∑

i=1

Zi+(n−d)T +
r−d
∑

i=1

Wi

}

−

{ d+1
∑

i=1

Zi+(n−d−1)T +
r−d−1
∑

i=1

Wi

}

= Wr−d+T −Zd+1 > 0

with probability one. Hence, the condition holds in this case as well.

(M3) It is the same as in the previous cases.

Thus follows the monotonicity of the survival function of the MLE in (5) for the case

of the Type-II hybrid censoring.

5 Generalized hybrid censoring

Both Type-I and Type-II hybrid censoring schemes have some potential drawbacks. Specif-

ically, in Type-I hybrid censoring, there may be very few or even no failures observed

whereas in Type-II hybrid censoring the experiment could last for a very long period of

time. In order to overcome these drawbacks, Chandrasekar et al. (2004) defined general-

ized hybrid censoring schemes and derived the MLEs of the exponential mean lifetime θ.

However, the stochastic monotonicity of these MLEs was not proved by these authors.

5.1 Generalized Type-I hybrid censoring

Recall the notation of Section 4.1. Now, in addition to T and r, fix k ∈ {1, . . . , r − 1}

and terminate the life-test at T ∗∗
1 = max{Xk:n, T ∗

1 } = max{Xk:n,min{Xr:n, T}}. This
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censoring scheme guarantees that at least k failures will be observed. If the lifetimes are

from E(θ), the MLE of θ has been derived by Chandrasekar et al. (2004) to be

θ̂ =















































1

k

{ k
∑

i=1

Xi:n + (n − k)Xk:n

}

, if D = 0, 1, . . . , k − 1,

1

D

{ D
∑

i=1

Xi:n + (n − D)T

}

, if D = k, . . . , r − 1,

1

r

{ r
∑

i=1

Xi:n + (n − r)Xr:n

}

, if D > r,

(6)

where again D = {#X’s 6 T}. There appears to be a misprint in Chandrasekar et

al. (2004) in that in the last case the MLE seems to be defined only for D = r rather than

for D > r.

We could again use TML to prove the stochastic monotonicity of the MLE. However,

all the work has been done in the previous section since actually the above MLE has a

form similar to the MLEs in hybrid censoring. Specifically, for D 6 r − 1, θ̂ is exactly

like the MLE in Type-II hybrid censoring case (but with k and r − 1 instead of r and n,

respectively) whereas for D > k − 1 it is similar to the MLE in Type-I hybrid censoring

case (but with k instead of 1). Hence, the stochastic monotonicity of the survival function

of θ̂ in (6) may be proved exactly along the same lines.

5.2 Generalized Type-II hybrid censoring

We shall now slightly change the notation and denote T and D by T1 and D1, respectively.

This is because under generalized Type-II hybrid censoring a second time point T2 >

T1 is fixed and the life-test is terminated at the random time T ∗∗
2 = min{T ∗

1 , T2} =

min{max{Xr:n, T1}, T2}. Under this censoring scheme, it is guaranteed that the total

time under test will be at most T2.

Define D2 = {#X’s 6 T2} and ∆2 = T2 −T1. Under exponentiality, the MLE of θ has

been derived by Chandrasekar et al. (2004) to be

θ̂ =















































1

D1

{ D1
∑

i=1

Xi:n + (n − D1)T1

}

, if D1 = r, r + 1, . . . , n,

1

r

{ r
∑

i=1

Xi:n + (n − r)Xr:n

}

, if D1 = 0, 1, . . . , r − 1, D2 > r,

1

D2

{ D2
∑

i=1

Xi:n + (n − D2)T2

}

, if D2 = 1, 2, . . . , r − 1.

(7)
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Note that in Chandrasekar et al. (2004) there is a misprint in this case too, in that in the

second line the MLE is defined only for D2 = r rather than for D2 > r.

In order to express θ̂ in (7) in a suitable form for using TML, we introduce an auxiliary

random variable D with pmf

Pθ(D = d) =











Pθ(D2 = d)/Pθ(D2 > 1), d = 1, . . . , r − 1,

Pθ(D1 6 r − 1, D2 > r)/Pθ(D2 > 1), d = r′,

Pθ(D1 = d)/Pθ(D2 > 1), d = r, . . . , n,

where r′ is some (irrelevant) value between r − 1 and r. Then, the MLE of θ can be

expressed as

θ̂ =















































1

D

{ D
∑

i=1

Xi:n + (n − D)T2

}

, if D = 1, . . . , r − 1,

1

r

{ r
∑

i=1

Xi:n + (n − r)Xr:n

}

, if D = r′,

1

D

{ D
∑

i=1

Xi:n + (n − D)T1

}

, if D = r, . . . , n.

(8)

The survival function of θ̂ in (8) can be expressed in the form in (1) with D = {1, . . . , r −

1, r′, r, . . . , n}.

Before proceeding to verify the three conditions of TML, we need to observe the fol-

lowing facts:

Fact 1. For any any d1 = 0, 1, . . . , r − 1 and x > 0,

Pθ(θ̂ > x|D1 = d1, D2 > r) =

n
∑

d2=r

Pθ(D2 = d2|D1 = d1)

Pθ(D2 > r|D1 = d1)
Pθ(θ̂ > x|D1 = d1, D2 = d2)

is increasing in θ. This will be proved using TML as follows:

(M1.1) Conditional on D1 = d1 6 r − 1, D2 = d2 > r,

θ̂ =
1

r

{ d1
∑

i=1

Xi:n +

r
∑

i=d1+1

Xi:n + (n − r)Xr:n

}

=
1

r

{ d1
∑

i=1

Xi:n + (n − d1)T1 +

r
∑

i=d1+1

(Xi:n − T1) + (n − r)(Xr:n − T1)

}

d
=

1

r

{ d1
∑

i=1

Zi + (n − d1)T1 +

r−d1−1
∑

i=1

Wi:d2−d1
+ (n − r + 1)Wr−d1:d2−d1

}

, (9)

where Z1, . . . , Zd1

iid
∼ E(θ)I(Z 6 T1) and W1, . . . ,Wd2−d1

iid
∼ E(θ)I(W 6 ∆2), indepen-

dently of Z’s. The sum of Z’s in (9) is stochastically increasing in θ. Using Lemma B.1,

10



we have the same to hold true for the sum of W ’s in (9) as well. By the independence of

the two sums, we conclude that the conditional distribution of θ̂ is stochastically increasing

in θ.

(M1.2) By Lemma B.2, the sum of W ’s in (9) is stochastically decreasing in d2.

(M1.3) This is a consequence of Lemma A.2(b).

Fact 2. For any x > 0,

Pθ(θ̂ > x|D1 6 r − 1, D2 > r) =

r−1
∑

d1=0

Pθ(D1 = d1|D2 > r)

Pθ(D1 6 r − 1|D2 > r)
Pθ(θ̂ > x|D1 = d1, D2 > r)

is increasing in θ. Once again, we will use TML to prove this result as follows:

(M2.1) This is exactly Fact 1.

(M2.2) For any d1 6 r − 2, let Z1, . . . , Zd1+1
iid
∼ E(θ)I(Z 6 T1). Conditional on D1 = d1,

D2 > r, we have

1

r

{ d1
∑

i=1

Xi:n +

r
∑

i=d1+1

Xi:n + (n − r + 1)Xr:n

}

=
1

r

{ d1
∑

i=1

Xi:n + (n − d1)T1 +

r−1
∑

i=d1+1

(Xi:n − T1) + (n − r + 1)(Xr:n − T1)

}

d
=

1

r

{ d1
∑

i=1

Zi + (n − d1)T1 +

r−1−d1
∑

i=1

Wi:n−d1
+ (n − r + 1)Wr−d1:n−d1

}

,

where W1, . . . ,Wn−d1

iid
∼ E(θ) but conditional on the event that at least r− d1 of them are

less than ∆2 and are independent of Z’s. Similarly, conditional on D1 = d1 + 1, D2 > r,

the MLE has the same distribution as

1

r

{ d1+1
∑

i=1

Zi + (n − d1 − 1)T1 +

r−2−d1
∑

i=1

W ′
i:n−d1−1 + (n − r + 1)W ′

r−d1−1:n−d1−1

}

,

where W ′
1, . . . ,W

′
n−d1−1

iid
∼ E(θ) but conditional on the event that at least r − d1 − 1 of

them are less than ∆2 and are independent of Z’s. Now,

{ d1
∑

i=1

Zi + (n − d1)T1

}

−

{ d1+1
∑

i=1

Zi + (n − d1 − 1)T1

}

= T1 − Zd+1 > 0.

Moreover, using arguments similar to those in Lemma B.3, we can prove that the sum of

W ’s is stochastically larger than the sum of W ′’s. Indeed, conditional on W1:n−d1
= x

(6 ∆2), (W2:n−d1
, . . . ,Wn−d1:n−d1

) have the same distribution as the order statistics in a

11



sample of size n − d1 − 1 from E(θ)I(W > x) but conditional further on the event that

at least r − d1 − 1 of them are less han ∆2. The rest of the proof is similar. Thus, the

conditional distribution of the MLE given D1 = d1, D2 > r, is stochastically decreasing

in d1.

(M2.3) This is Lemma A.2(d).

Fact 3. For any x, θ > 0,

Pθ(θ̂ > x|D1 6 r − 1, D2 > r) < Pθ(θ̂ > x|D2 = r − 1).

Here, we use once more TML but with a slight variation, where the events {D2 > r} and

{D2 = r − 1} play the roles of θ and θ′, respectively. Before proceeding, note that

Pθ(θ̂ > x|D2 = r − 1) =

r−1
∑

d1=0

Pθ(D1 = d1|D2 = r − 1)Pθ(θ̂ > x|D1 = d1, D2 = r − 1).

(M3.1) We want to show that for all d1 = 0, 1, . . . , r − 1 and x, θ > 0,

Pθ(θ̂ > x|D1 = d1, D2 > r) < Pθ(θ̂ > x|D1 = d1, D2 = r − 1).

For any d1 = 0, 1, . . . , r − 1, conditional on D1 = d1, D2 = r − 1, we have

1

r − 1

{ d1
∑

i=1

Xi:n +

r−1
∑

i=d1+1

Xi:n + (n − r + 1)T2

}

=
1

r − 1

{ d1
∑

i=1

Xi:n + (n − d1)T1 +

r−1
∑

i=d1+1

(Xi:n − T1) + (n − r + 1)∆2

}

d
=

1

r − 1

{ d1
∑

i=1

Zi + (n − d1)T1 +

r−1−d1
∑

i=1

Wi:r−1−d1
+ (n − r + 1)∆2

}

, (10)

where Z1, . . . , Zd1

iid
∼ E(θ)I(Z 6 T1) and W1, . . . ,Wr−1−d1

iid
∼ E(θ)I(W 6 ∆2) indepen-

dently of Z’s. On the other hand, conditional on D1 = d1, D2 > r, we have

1

r

{ d1
∑

i=1

Xi:n +
r

∑

i=d1+1

Xi:n + (n − r + 1)Xr:n

}

=
1

r

{ d1
∑

i=1

Xi:n + (n − d1)T1 +
r−1
∑

i=d1+1

(Xi:n − T1) + (n − r + 1)(Xr:n − T1)

}

d
=

1

r

{ d1
∑

i=1

Zi + (n − d1)T1 +

r−1−d1
∑

i=1

Wi:n−d1
+ (n − r + 1)Wr−d1:n−d1

}

,
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where the Z’s are as before and W1, . . . ,Wn−d1

iid
∼ E(θ) but conditional on the event that

at least r − d1 of them are less than ∆2. This implies immediately that Wr−d1:n−d1
6 ∆2

and that the MLE is stochastically smaller than

1

r − 1

{ d1
∑

i=1

Zi + (n − d1)T1 +

r−1−d1
∑

i=1

Wi:n−d1
+ (n − r + 1)∆2

}

. (11)

Observe that (10) and (11) differ only in the sum of W ’s which in both cases are in-

dependent of the sum of Z’s. Therefore, we will complete the proof if we show that
∑r−1−d1

i=1 Wi:n−d1
6st

∑r−1−d1

i=1 Wi:r−1−d1
. Since D2 ranges from r to n,

∑r−1−d1

i=1 Wi:n−d1

has a mixture of distributions; conditional on D2 = d2, it has the same distribution

as
∑r−1−d1

i=1 Wi:d2−d1
. By Lemma B.2, these distributions are stochastically ordered, the

stochastically greatest of which corresponding to d2 = r. Thus,
∑r−1−d1

i=1 Wi:n−d1
6st

∑r−1−d1

i=1 Wi:r−d1
. Further, the latter sum is stochastically smaller than

∑r−1−d1

i=1 Wi:r−1−d1

and this completes the proof of (M3.1).

(M3.2) Next, we want to show that for any d1 = 0, 1, . . . , r − 2 and x, θ > 0,

Pθ(θ̂|D1 = d1 + 1, D2 > r) < Pθ(θ̂|D1 = d1, D2 > r).

But, this has been already proved in (M2.2).

(M3.3) We need to show that Pθ(D1 = d1|D2 > r)/Pθ(D1 = d1|D2 = r − 1) is increasing

in d1 ∈ {0, 1, . . . , r − 1}. But this is exactly Lemma A.2(c).

We are now ready to apply TML for proving the stochastic monotonicity of the MLE

in (8).

(M1) For d 6= r′, the conditional distribution of θ̂, given D = d, is similar to that in

Type-I censoring. For d = r′, it is Fact 2.

(M2) Except for the cases d = r−1 and r ′, all other cases are similar to Type-I censoring.

For d = r − 1, it is Fact 3. Now, we have to show that

Pθ(θ̂ > x|D1 6 r − 1, D2 > r) > Pθ(θ̂ > x|D1 = r).

The conditional distribution of θ̂, given D1 = r, is the same as of

1

r

{ r
∑

i=1

Zi + (n − r)T1

}

, (12)

where Z1, . . . , Zr
iid
∼ E(θ)I(Z 6 T1). On the other hand, the conditional distribution of θ̂,

given D1 6 r−1, D2 > r, can be written as a mixture of distributions as D1 ranges from 0

to r − 1. These are the same distributions encountered in (M2.2) wherein we proved that
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they are stochastically decreasing in d1, the stochastically smallest arising when d1 = r−1.

Hence, θ̂|(D1 = r − 1, D2 > r) 6st θ̂|(D1 6 r − 1, D2 > r). Conditional on D1 = r − 1,

D2 > r, θ̂ has the same distribution as

1

r

{ r−1
∑

i=1

Zi + (n − r + 1)T1 + (n − r + 1)W1:n−r+1

}

, (13)

where W1:n−r+1 is the minimum in a sample of size n− r +1 from E(θ) but conditional on

the event that at least one observation is less than ∆2. The difference between (13) and

(12) is proportional to T1 − Zr + (n − r + 1)W1:n−r+1 > 0, and this implies the result.

(M3) Since Pθ(D1 = d1)/Pθ′(D1 = d1) and Pθ(D2 = d2)/Pθ′(D2 = d2) are both strictly

increasing functions for θ < θ′, it turns out that Pθ(D = d)/Pθ′(D = d) is strictly increas-

ing in {1, . . . , r − 1} and {r, . . . , n}. Moreover, in Lemma A.2(e), it is shown that

Pθ(D2 = r − 1)

Pθ′(D2 = r − 1)
6

Pθ(D1 6 r − 1, D2 > r)

Pθ′(D1 6 r − 1, D2 > r)
6

Pθ(D1 = r)

Pθ′(D1 = r)

as required.

Thus follows the stochastic monotonicity of the survival function of the MLE θ̂ in (8)

in the case of generalized Type-II hybrid censoring.

6 Discussion

In this paper, we have presented a lemma which is very useful in establishing the stochastic

monotonicity of an estimator in situations wherein its distribution can be expressed as a

mixture. By checking the three monotonicities described in this lemma, we were able

to present a formal proof for the stochastic monotonicity of the MLE of an exponential

mean under different types of censored data. In the case of Type-I hybrid censoring,

this monotonicity was in question for nearly two decades since the work of Chen and

Bhattacharyya (1988).

Clearly, TML can also be useful outside the censoring context whenever a mixture

distribution has the required monotonicities. We shall now present such an example.

Kundu and Basu (2000) considered the following model. Let (X1i, X2i), i = 1, . . . , n, be

independent random vectors consisting of independent components such that for j = 1, 2

and i = 1, . . . , n, Xji ∼ E(θj). Further, let Xi = min{X1i, X2i} and δi be an indica-

tor of whether X1i < X2i or X1i > X2i. Such data arise when n individuals are ex-

posed to two competing risks, so that Xi represents the failure time of the i-th individual

and δi indicates its cause of failure. For a known fixed m < n, the observed data are

(X1, δ1), . . . , (Xm, δm), (Xm+1, ∗), . . . , (Xn, ∗). Here, a “∗” means that the corresponding

indicator δ is unobserved, and so there are n − m unallocated failures.
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Let D be the number of failures due to cause 1. Then, the MLE of θ1 is

θ̂1 =
m

∑n
i=1 Xi

nD
,

provided D > 1. If no failures due to Cause 1 occurred, then the MLE of θ1 does not exist.

Here, D is a binomial B(m, p) random variable, where p = θ2/(θ1 + θ2), but is restricted

to be at least 1. Kundu and Basu (2000) conjectured that, for fixed θ2, θ̂1 is stochastically

increasing in θ1, but they could not provide a mathematical proof. However, this result

can be easily proved by using TML as follows:

(M1) Under the above assumptions,
∑n

i=1 Xi ∼ G(n, β), where β = θ1θ2/(θ1+θ2). Hence,

the conditional distribution of θ̂1, given D = d, follows a G(n,mβ/(nd)) distribution.

Since the scale parameter of this gamma distribution is increasing in θ1, the result follows

immediately.

(M2) Similarly, the result follows by observing that the scale parameter of G(n,mβ/(nd))

is decreasing in d.

(M3) The probability of success p of the binomial distribution of D is strictly decreasing

in θ1 and this implies that D is stochastically decreasing in θ1.

Hence, the required monotonicity result for θ̂1 follows immediately.

Appendix

A Distribution of the number of failures

Let X1, . . . , Xr, Xr+1, . . . , Xn
iid
∼ E(θ), θ > 0, where 1 6 r 6 n. Let T1 and T2 be some

fixed constants with 0 = T0 < T1 < T2 and ∆j = Tj−Tj−1, j = 1, 2. Define Nj = #{X’s ∈

(Tj−1, Tj ]} and Dj = #{X’s 6 Tj}, j = 1, 2. Clearly, (D1, D2) = (N1, N1 + N2). Then,

the following hold true.

Lemma A.1. (a) The probability mass function (pmf) of (N1, N2) is

Pθ(N1 = n1, N2 = n2) =
n!

n1!n2!(n − n1 − n2)!
×

(1 − e−∆1/θ)n1e−(n−n1)∆1/θ(1 − e−∆2/θ)n2e−(n−n1−n2)∆2/θ, 0 6 n1, n2, n1 + n2 6 n.

(b) The probability mass function (pmf) of (D1, D2) is

Pθ(D1 = d1, D2 = d2) =
n!

d1!(d2 − d1)!(n − d2)!
×

(1 − e−∆1/θ)d1e−(n−d1)∆1/θ(1 − e−∆2/θ)d2−d1e−(n−d2)∆2/θ, 0 6 d1 6 d2 6 n.

(c) The marginal distribution of Dj is binomial B(n, 1 − e−Tj/θ), j = 1, 2.
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Proof. The proofs are straightforward.

Next, we provide some statistical properties of the distribution of (D1, D2).

Lemma A.2. (a) The distribution of Dj has the monotone likelihood ratio property with

respect to θ, i.e., the ratio
Pθ(Dj=d)
Pθ′ (Dj=d) is strictly increasing in d for any θ < θ ′. The result

does not change even if Dj is restricted in some subset of {0, 1, . . . , n}.

(b) For any d1 ∈ {0, 1, . . . , n}, the conditional distribution of D2, given D1 = d1, has

the monotone likelihood ratio property with respect to θ, i.e., the ratio Pθ(D2=d2|D1=d1)
Pθ′ (D2=d2|D1=d1)

is

strictly increasing in d2 for any θ < θ′. The result does not change even if D2 is restricted

in some subset of {0, 1, . . . , n}.

(c) For any fixed r ∈ {1, . . . , n} and θ > 0, the ratio Pθ(D1=d1|D2>r)
Pθ(D1=d1|D2=r−1) is strictly increasing

in d1 ∈ {1, . . . , r − 1}.

(d) For any fixed r ∈ {1, . . . , n} and θ < θ ′, the ratio Pθ(D1=d1|D2>r)
Pθ′ (D1=d1|D2>r) is strictly increasing

in d1 ∈ {1, . . . , r}.

(e) For any fixed r ∈ {1, . . . , n} and θ < θ ′, we have

Pθ(D2 = r − 1)

Pθ′(D2 = r − 1)
6

Pθ(D1 6 r − 1, D2 > r)

Pθ′(D1 6 r − 1, D2 > r)
6

Pθ(D1 = r)

Pθ′(D1 = r)
.

Proof. (a) Let D∗ be any subset of {0, 1, . . . , n}. Then,

Pθ(Dj = d|Dj ∈ D∗)

Pθ′(Dj = d|Dj ∈ D∗)
∝

(n
d

)

(1 − e−Tj/θ)de−(n−d)Tj/θ

(

n
d

)

(1 − e−Tj/θ′)de−(n−d)Tj/θ′
∝

(

eTj/θ − 1

eTj/θ′ − 1

)d

,

which is strictly increasing in d, since (eTj/θ − 1)/(eTj /θ′ − 1) > 1.

(b) Similar to (a), for d2 ∈ {d1, . . . , n} ∩ D∗,

Pθ(D2 = d2|D1 = d1, D2 ∈ D∗)

Pθ(D2 = d2|D1 = d1, D2 ∈ D∗)
∝

Pθ(D1 = d1, D2 = d2)

Pθ′(D1 = d1, D2 = d2)
∝

(

e∆2/θ − 1

e∆2/θ′ − 1

)d2

.
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(c) For some positive constants C1 and C2 that do not depend on d1, we have

Pθ(D1 = d1 + 1|D2 > r)

Pθ(D1 = d1 + 1|D2 = r − 1)
= C1

n
∑

d2=r

Pθ(D1 = d1 + 1, D2 = d2)

Pθ(D1 = d1 + 1, D2 = r − 1)

= C2

n
∑

d2=r

(r − 1 − d1 − 1)!(e∆2/θ − 1)d2

(d2 − d1 − 1)!(n − d2)!

= C2

n
∑

d2=r

d2 − d1

r − 1 − d1
×

(r − 1 − d1)!(e
∆2/θ − 1)d2

(d2 − d1)!(n − d2)!

> C2

n
∑

d2=r

(r − 1 − d1)!(e
∆2/θ − 1)d2

(d2 − d1)!(n − d2)!

=
Pθ(D1 = d1|D2 > r)

Pθ(D1 = d1|D2 = r − 1)
.

(d) Observe that

Pθ(D1 = d1 + 1, D2 > r)

=
n

∑

d2=r

n!

(d1 + 1)!(d2 − d1 − 1)!(n − d2)!

×(1 − e−∆1/θ)d1+1e−(n−d1−1)∆1/θ(1 − e−∆2/θ)d2−d1−1e−(n−d2)∆2/θ

=
e∆1/θ − 1

(d1 + 1)(1 − e−∆2/θ)

n
∑

d2=r

(d2 − d1)
n!

d1!(d2 − d1)!(n − d2)!

×(1 − e−∆1/θ)d1e−(n−d1)∆1/θ(1 − e−∆2/θ)d2−d1e−(n−d2)∆2/θ

=
e∆1/θ − 1

(d1 + 1)(1 − e−∆2/θ)

×

{ n
∑

d2=r

d2Pθ(D1 = d1, D2 = d2) − d1Pθ(D1 = d1, D2 > r)

}

and by Lemma C.1,

Pθ(D1 = d1 + 1, D2 > r)

Pθ′(D1 = d1 + 1, D2 > r)
>

∑n
d2=r d2Pθ(D1 = d1, D2 = d2) − d1Pθ(D1 = d1, D2 > r)

∑n
d2=r d2Pθ′(D1 = d1, D2 = d2) − d1Pθ′(D1 = d1, D2 > r)

.

The right hand side of the above inequality is greater than or equal to Pθ(D1=d1,D2>r)
Pθ′ (D1=d1,D2>r) if

and only if

∑n
d2=r d2Pθ(D1 = d1, D2 = d2)

Pθ(D1 = d1, D2 > r)
−

∑n
d2=r d2Pθ′(D1 = d1, D2 = d2)

Pθ′(D1 = d1, D2 > r)
> 0.

However, the last difference equals Eθ(D2|D1 = d1, D2 > r) − Eθ′(D2|D1 = d1, D2 > r)

which is strictly positive by Part (b). Thus, the assertion is proved.
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(e) The second inequality arises from (d), since Pθ(D1 = r) = Pθ(D1 = r,D2 > r). In

order to prove the first inequality, we will first show that

Pθ(D2 = r − 1)

Pθ′(D2 = r − 1)
6

Pθ(D1 6 r − 1, D2 = d2)

Pθ′(D1 6 r − 1, D2 = d2)
(14)

for any d2 > r. This, in conjuction with Lemma C.2, will give the result. Observe that

Pθ(D1 6 r − 1, D2 = d2)

Pθ(D2 = r − 1)

=

∑r−1
d1=0

n!
d1!(d2−d1)!(n−d2)! (1 − e−∆1/θ)d1e−(n−d1)∆1/θ(1 − e−∆2/θ)d2−d1e−(n−d2)∆2/θ

n!
(r−1)!(n−r+1)! (1 − e−T2/θ)r−1e−(n−r+1)T2/θ

= (e∆2/θ − 1)d2−r+1 (n − r + 1)!

(n − d2)!

×
r−1
∑

d1=0

(r − 1 − d1)!

(d2 − d1)!

(

r − 1

d1

)(

1 − e−T1/θ

1 − e−T2/θ

)d1
(

1 −
1 − e−T1/θ

1 − e−T2/θ

)r−1−d1

= (e∆2/θ − 1)d2−r+1 (n − r + 1)!

(n − d2)!
Eθ

{

(r − 1 − Y )!

(d2 − Y )!

}

,

where Y ∼ B
(

r − 1, 1−e−T1/θ

1−e−T2/θ

)

. It is easy to show that the probability of success of

this distribution is strictly decreasing in θ. Hence, Y is stochastically decreasing in θ.

Moreover,
(r − 1 − (y + 1))!

(d2 − (y + 1))!
=

(r − 1 − y)!

(d2 − y)!
×

d2 − y

r − 1 − y
>

(r − 1 − y)!

(d2 − y)!

for d2 > r, which means that (r−1−y)!
(d2−y)! is a strictly increasing function. Thus,

Eθ

{

(r − 1 − Y )!

(d2 − Y )!

}

> Eθ′

{

(r − 1 − Y )!

(d2 − Y )!

}

. (15)

Now, for any d2 > r and θ < θ′, we have

(e∆2/θ − 1)d2−r+1 > (e∆2/θ′ − 1)d2−r+1. (16)

Since (15) and (16) imply (14), the inequality is proved.

B Some results on order statistics

Lemma B.1. Let X, Y be absolutely continuous random variables with X 6st Y . For any

fixed integer n, let X1, . . . , Xn be independent copies of X and Y1, . . . , Yn be independent

copies of Y . Then, for any (w0, w1, . . . , wn) ∈ R× [0,∞)n, we have w0 +
∑n

i=1 wiXi:n 6st

w0 +
∑n

i=1 wiYi:n.
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Proof. The assertion is a consequence of the fact that X 6st Y implies (X1:n, . . . , Xn:n) 6st

(Y1:n, . . . , Yn:n); see Belzunce et al. (2005).

Lemma B.2. Let X1, X2, . . . be iid from an absolutely continuous distribution. Then, for

any 1 6 r 6 n, and (w1, . . . , wr) ∈ [0,∞)r, Sn =
∑r

i=1 wiXi:n is stochastically decreasing

in n.

Proof. This follows from the fact that for all n > 1 it holds (X1:n+1, . . . , Xn:n+1) 6st

(X1:n, . . . , Xn:n); see Zhuang and Hu (2007).

Lemma B.3. Let X1, X2, . . . be iid random variables from an absolutely continuous dis-

tribution on a subset of non-negative reals. For any 1 6 r 6 n and (w1, . . . , wr) ∈ (0,∞)r,

let S1 =
∑r−1

i=1 wi+1Xi:n−1 and S2 =
∑r

i=1 wiXi:n. Then, S1 6st S2.

Proof. Let x be any point in the support of the distribution. Conditional on X1:n = x,

(X2:n, . . . , Xr:n, . . . , Xn:n) has the same distribution as the order statistics in sample of

size n − 1 from the underlying distribution but left truncated at x. Denote by Y a

random variable from this left truncated distribution and recall that X 6st Y . By Lemma

B.1, we have
∑r−1

i=1 wi+1Xi:n−1 6st
∑r−1

i=1 wi+1Yi:n−1. Clearly, the latter is smaller than

w1x+
∑r−1

i=1 wi+1Yi:n−1 which has exactly the conditional distribution of S2, given X1:n = x.

Thus, for any integrable increasing function h, E{h(S1)} 6 E{h(S2)|X1:n = x}. Since

this inequality is true for all x, we have E{h(S1)} 6 E{h(S2)}, and the required result

follows.

Lemma B.4. Let X1, . . . , Xn be iid from some absolutely continuous distribution with pdf

f and cdf F . For some fixed real T , let D = #{X’s 6 T}. Then, conditional on D = d,

the random vectors (X1:n, . . . , Xd:n) and (Xd+1:n, . . . , Xn:n) are independent. Moreover,

conditional on D = d,

(X1:n, . . . , Xd:n)
d
= (U1:d, . . . , Ud:d),

(Xd+1:n, . . . , Xn:n)
d
= (V1:n−d, . . . , Vn−d:n−d),

where U1, . . . , Ud
iid
∼ f(x)I(x 6 T ) and V1, . . . , Vn−d

iid
∼ f(x)I(x > T ).
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Proof. The conditional joint density of the ordered sample is

f(x1, . . . , xn|D = d) =
n!

∏n
i=1 f(xi)

P(D = d)
I(x1 < · · · < xd 6 T < xd+1 < · · · < xn)

=
n!

∏n
i=1 f(xi)

n!
d!(n−d)!F (T )d{1 − F (T )}n−d

I(x1 < · · · < xd 6 T < xd+1 < · · · < xn)

=

{

d!

d
∏

i=1

f(xi)

F (T )
I(x1 < · · · < xd 6 T )

}

×

{

(n − d)!

n
∏

i=d+1

f(xi)

1 − F (T )
I(T < xd+1 < · · · < xn)

}

which proves the required result.

C Two useful lemmas

Lemma C.1. For any a, b > 0, the function h(x) = 1−e−bx

eax−1 is strictly decreasing in (0,∞).

Proof. After some algebra, we get the derivative of h(x) to be

h′(x) =
1 − e−(a+b)x

x(1 − e−ax)

{

(a + b)x

e(a+b)x − 1
−

ax

eax − 1

}

.

Since y
ey−1 is strictly decreasing in y > 0, the result follows.

Lemma C.2. Let a, a1, . . . , am, b, b1, . . . , bm be positive real numbers such that ai/bi 6 a/b,

i = 1, . . . ,m. Then,
∑m

i=1 ai/
∑m

i=1 bi 6 a/b.

Proof. The proof is straightforward.
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