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Abstract

The paper describes Bayesian estimation for the parameters of Kibble’s (1941) bivariate gamma
distribution. The density of this distribution can be written as a mixture, allowing for a simple data
augmentation scheme. An MCMC algorithm is constructed to facilitate Bayesian estimation. We
show that the resulting chain is geometrically ergodic and thus a regenerative sampling procedure
is applicable allowing for estimation of ergodic means’ standard errors. Bayesian hypothesis testing
procedures are developed to test both the dependence hypothesis of the two variables as well as the
hypothesis that their means are equal. A reversible jump MCMC algorithm is proposed to carry
out this model selection problem. Real and simulated datasets are used to illustrate the proposed
methodology.
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1 Introduction

In several circumstances the researcher has to deal with paired positive data. Such examples usually arise

in clinical trials involving survival analysis (paired lifetimes) and hydrology (flows in two distinct districts

of the same river) among others. Currently, several models based on bivariate exponential distributions

have been proposed in the statistical literature; for example Lagakos (1978), Wang and Ghosh (2000),

Achcar and Leandro (1998), Damien and Muller (1998) used bivariate exponential models as survival

models. For applications in hydrology, see Yue et al. (2001).

Consider the case of bivariate continuous positive data with positive skewness to each direction.

Bivariate extensions of gamma densities can be used to construct plausible models for such data. They

can take a variety of forms; for a review see Kotz et al. (2000, chapter 48). Multivariate or even bivariate

gamma distributions have not been extensively used at the past, mainly due to their complicated nature.

Among the families of bivariate gamma models, the present paper focuses on the distribution in-

troduced by Kibble (1941). Two random variables X,Y are said to follow Kibble’s bivariate gamma

distribution (hereafter KBGD) if they have joint density function

f(x, y|v, λ1, λ2, ρ) =
(λ1λ2)

v

(1 − ρ)Γ(v)

(

xy

ρλ1λ2

)

v−1
2

exp

(

−λ1x+ λ2y

1 − ρ

)

Iv−1

(

2
√
ρλ1λ2xy

1 − ρ

)

, (1)
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where x, y, λ1, λ2 > 0, 0 ≤ ρ < 1, v > 0 and Iν(·) is the modified Bessel function of the first kind of order

ν defined as

Iν(α) =
∞
∑

κ=0

(α/2)2κ+ν

Γ(κ+ ν + 1)κ!
, α > 0.

In (1) the marginal distributions of X,Y are G(v, λ1), G(v, λ2), respectively, that is, gamma with shape

v and means v/λ1, v/λ2. The conditional expectation and variance of X given Y = y are

E(X |Y = y) = vλ−1
1 (1 − ρ) + ρλ−1

1 λ2y,

Var(X |Y = y) = vλ−2
1 (1 − ρ)2 + 2ρ(1− ρ)λ−2

1 λ2y,

i.e. they are linear in y. Moreover, Corr(X,Y ) = ρ and X,Y are independent iff ρ = 0. In the special

case v = 1, (1) is Downton’s (1970) bivariate exponential distribution.

In what follows, f denotes probability densities. Using the series representation of the Bessel function

(1) takes the form

f(x, y|v, λ1, λ2, ρ) =

∞
∑

κ=0

f(κ|ρ)f
(

x

∣

∣

∣

∣

v + κ,
λ1

1 − ρ

)

f

(

y

∣

∣

∣

∣

v + κ,
λ2

1 − ρ

)

where f(κ|ρ) = Γ(v+κ)
Γ(v)κ! (1−ρ)vρκ, κ ∈ Z+ := {0, 1, 2, . . .}, is the probability mass function of the negative

binomial distribution NB(v, 1 − ρ) and f(x|v + κ, λ1/(1− ρ)), f(y|v + κ, λ2/(1− ρ)) are the probability

density functions of gamma distributions G(v + κ, λ1/(1− ρ)), G(v + κ, λ2/(1− ρ)) respectively. Clearly,

X and Y are conditionally (given κ) independent gamma variables.

KBGD allows for two interesting interpretations which can be useful for modelling survival or reliabil-

ity data. It can be considered either as a competing risk model (where two different causes of failure can

occur) or as a frailty model. A frailty model assumes that the event times are conditionally independent

given the frailty, which is an unobserved heterogeneity introducing dependence between the two variables

(see for example Hougaard, 1984). Thus, KBGD is in fact a frailty model with the negative binomial as

frailty distribution.

The present paper aims to introduce a Bayesian procedure for estimating the parameters of KBGD.

We propose an MCMC approach using the data augmentation offered by the mixture representation of

the density. Furthermore, since typical Bayesian approach treats ρ as a continuous random variable, it

does not allow for testing the hypothesis of independence (ρ = 0). For this reason, we have constructed

a reversible jump MCMC (RJMCMC) algorithm in order to estimate posterior model probabilities and

evaluate the support on the corresponding hypotheses of independence or dependence between the two

variables of interest. In addition, in paired data interest may also lie on evaluating the difference between

the means of the two measurements. For example, if the data refer to clinical measurements of a patient

before and after a treatment, we would like to examine the treatment effect via testing the hypothesis

of equal means before and after treatment. Implementation and results for Bayesian model comparison

(using RJMCMC) which correspond and evaluate the above hypotheses are provided in detail.

The remaining of the paper proceeds as follows: Section 2 provides Bayesian estimation of the parame-

ters through an MCMC scheme. Properties of the produced chain are also examined. Section 3 describes

Bayesian hypothesis testing through RJMCMC. Reduced models with either zero correlation (ρ = 0)

and/or equal marginal means (λ1 = λ2) are compared to the KBGD. Furthermore, model diagnostics are

discussed. Simulated examples and a real data application can be found in Section 4, while concluding

remarks in Section 5.
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2 Bayesian estimation of the parameters

Let (x1, y1), . . . , (xn, yn) be a random sample from (1) and set x = (x1, . . . , xn), y = (y1, . . . , yn), s1 =
∑

xi, s2 =
∑

yi. Consider Bayesian estimation of the parameters λ1, λ2, ρ to which is assigned the prior

distribution

λ1, λ2, ρ ∼ f(λ1|ρ)f(λ2|ρ)f(ρ),

where

λj |ρ ∼ G(cj , dj/(1 − ρ)) for j = 1, 2 and ρ ∼ Beta(c3, d3).

The discussion will be simplified if we reparametrize (1) by setting µj = λj/(1 − ρ), j = 1, 2. Then, µ1,

µ2, ρ are mutually independent with prior distributions

µj ∼ G(cj , dj) for j = 1, 2 and ρ ∼ Beta(c3, d3).

The mixture representation of the data distribution leads to a complicated posterior. In such cases it

is convenient to proceed by data augmentation treating the mixture parameters as unobserved random

variables.

So, let κ = (κ1, . . . , κn) be the unobserved sample from the negative binomial distribution NB(v, 1−ρ)
such that xi, yi are independent conditional on κi. It can be seen that conditional on µ1, µ2, ρ,x,y, the

κi’s are independent with probability mass function

f(κi|µ1, µ2, ρ,x,y) ∝ (ρµ1µ2xiyi)
κi

Γ(κi + v)κi!
, κi = 0, 1, 2, . . . .

This is the Bessel distribution, Bes (v − 1, 2
√
ρµ1µ2xiyi ), recently introduced by Yuan and Kalbfleisch

(2000). For later use we note that E{κi|µ1, µ2, ρ,x,y} =
√
ρµ1µ2xiyiRv−1(2

√
ρµ1µ2xiyi), whereRv−1(z) =

Iv(z)/Iv−1(z) is the Bessel quotient. Notice also that for v ≥ 1/2 it holds 0 < Rv−1(z) < 1, ∀ z > 0 (see

Amos, 1974). Now, conditional on κ,x,y, the parameters µ1, µ2, ρ are independent with distributions

µj |κ,x,y ∼ G(cj + nv +
∑

κi, dj + sj), j = 1, 2, ρ|κ,x,y ∼ Beta(c3 +
∑

κi, d3 + nv).

The Gibbs sampler sequentially simulates from

µ1|x,y,κ ∼ G (c1 + nv +
∑

κi, d1 + s1)
µ2|x,y,κ ∼ G (c2 + nv +

∑

κi, d2 + s2)
ρ|x,y,κ ∼ Beta (c3 +

∑

κi, d3 + nv)
κi|x,y, µ1, µ2, ρ ∼ Bes

(

v − 1, 2
√
ρµ1µ2xiyi

)

, i = 1, 2, . . . , n.

(2)

Simulation from gamma and beta distributions is a well–known task. On the other hand, algorithms for

simulating Bessel variates have been provided by Devroye (2002) and Iliopoulos and Karlis (2003).

2.1 Geometric ergodicity

Denote by Θ = (0,∞)2 × [0, 1)×Zn
+ the state space of the Markov chain arising from the Gibbs sampling

scheme (2), B(Θ) the associated σ–algebra, P (θ, ·) the transition kernel and π its stationary distribution.

Let θ = (µ1, µ2, ρ,κ), θ
′ = (µ′

1, µ
′

2, ρ
′,κ′) be two consecutive states of the chain. It is easily seen that

the transition kernel has density

p(θ,θ′) = f(µ′

1|κ)f(µ′

2|κ)f(ρ′|κ)
n
∏

i=1

f(κ′i|µ′

1, µ
′

2, ρ
′), (3)

3



where κ =
∑n

i=1 κi.

We will show that (at least when v ≥ 1/2) the chain is geometrically ergodic. This means that the

chain converges in total variation to π at an exponential rate implying further that under some additional

conditions the central limit theorem holds for certain functions of interest.

It is straightforward to see that the chain is π–irreducible, aperiodic and Harris recurrent. Hence, we

need to establish a drift condition and an associated minorization condition (see for example Rosenthal,

1995 and Jones and Hobert, 2001). Recall that a drift condition holds if for some function V : Θ → [0,∞),

some a ∈ (0, 1) and some b ∈ (0,∞),

E{V (θ′)| θ} ≤ aV (θ) + b, ∀ θ ∈ Θ.

On the other hand, a minorization condition holds if for some probability measure Q, some π–positive

set C ∈ B(Θ) and some ε > 0,

P (θ, A) ≥ εQ(A), ∀ θ ∈ C, A ∈ B(Θ). (4)

In fact this is a special minorization condition holding for the first step of the chain. Then, the chain is

geometrically ergodic if (4) holds with C = {θ ∈ Θ : V (θ) ≤ d} for any d > 2b/(1− a).

A drift condition. Let V (θ) = κ =
∑

κi. Then,

E{V (θ′)|θ} =

n
∑

i=1

E {E[κ′i|µ′

1, µ
′

2, ρ
′]|κ}

=

n
∑

i=1

E

{

√

ρ′µ′

1µ
′

2xiyi Rv−1

(

2
√

ρ′µ′

1µ
′

2xiyi

)
∣

∣

∣
κ

}

≤ R∗

v−1

n
∑

i=1

E

{

√

µ′

1µ
′

2xiyi

∣

∣

∣
κ

}

[where R∗

v−1 = sup
z
Rv−1(z)]

= R∗

v−1

n
∑

i=1

√

xiyi

(d1 + s1)(d2 + s2)

2
∏

j=1

Γ(cj + nv + κ+ 1/2)

Γ(cj + nv + κ)

≤ R∗

v−1

n
∑

i=1

√

xiyi

(d1 + s1)(d2 + s2)

2
∏

j=1

√

cj + nv + κ (5)

≤ R∗

v−1

n
∑

i=1

√

xiyi

(d1 + s1)(d2 + s2)
(max{c1, c2} + nv + κ)

≤ aV (θ) + b,

where

a = R∗

v−1

n
∑

i=1

√

xiyi

(d1 + s1)(d2 + s2)
and b = (max{c1, c2} + nv)a. (6)

For the inequality in (5) we have used the fact that Γ(x+ 1/2)/Γ(x) ≤ x1/2 (see Kershaw, 1983). When

v ≥ 1/2, R∗

v−1 = 1 and thus, by the Cauchy–Schwarz inequality, 0 < a < 1. Hence the required drift

condition has been established, at least for v ≥ 1/2. The above inequality, may hold also for smaller v’s

depending on the data and the prior hyperparameters d1, d2.

A minorization condition. We will prove that for any κ∗ > 0, the set C = {θ ∈ Θ : V (θ) ≤ κ∗} satisfies

(4). The technique is based on Rosenthal (1995) (see also Jones and Hobert, 2001).
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From (3) it is obvious that

p(θ,θ′) ≥ f(κ′|µ′

1, µ
′

2, ρ
′) inf

κ∈[0,κ∗]
{f(µ′

1|κ)f(µ′

2|κ)f(ρ′|κ)} = f(κ′|µ′

1, µ
′

2, ρ
′)f∗(µ′

1)f
∗(µ′

2)f
∗(ρ′),

where the superscript “∗” denotes infimum with respect to κ ∈ [0, κ∗]. In order to proceed we will need

the following lemmas.

Lemma 1. Let f(x; a, b) denote the G(a, b) density, i.e., f(x; a, b) = Γ(a)−1baxa−1e−bx, x > 0. Then, for

0 < a1 < a2,

inf
a∈[a1,a2]

f(x; a, b) =

{

f(x; a2, b), x ≤ x∗

f(x; a1, b), x > x∗,

with x∗ = b−1
{

Γ(a2)
Γ(a1)

}
1

a2−a1
.

Lemma 2. Let f(x; a, b) denote the Beta(a, b) density, i.e., f(x; a, b) = Γ(a+b)
Γ(a)Γ(b) x

a−1(1−x)b−1, 0 < x < 1.

Then, for 0 < a1 < a2,

inf
a∈[a1,a2]

f(x; a, b) =

{

f(x; a2, b), x ≤ x∗

f(x; a1, b), x > x∗,

with x∗ =
{

Γ(a1+b)Γ(a2)
Γ(a2+b)Γ(a1)

}
1

a2−a1
.

Set now

ε =
∑

κ

∫

ρ

∫

µ2

∫

µ1

f(κ|µ1, µ2, ρ)f
∗(µ1)f

∗(µ2)f
∗(ρ)dµ1dµ2dρ

=

(
∫

µ1

f∗(µ1)dµ1

)(
∫

µ2

f∗(µ2)dµ2

)(
∫

ρ

f∗(ρ)dρ

)

(7)

and

q(θ′) = ε−1f(κ′|µ′

1, µ
′

2, ρ
′)f∗(µ′

1)f
∗(µ′

2)f
∗(ρ′), (8)

with f∗’s being the corresponding infimums arising from Lemmas 1 and 2. It can be easily seen that

(4) holds with Q(A) =
∫

A
q(dθ). Note also that the computation of ε can be done by evaluating four

incomplete gamma and two incomplete beta functions. Moreover, it does not depend on the observed

data.

By proving the drift and minorization conditions we have established the geometric ergodicity of the

chain. Based on this property, one could try using Rosenthal’s (1995) Theorem 12 in order to obtain

crude quantitative bounds on the convergence to stationarity after a finite number of iterations. However,

in cases where x’s and y’s are strongly correlated, ε is too close to zero making this approach of limited

use (see example in Subsection 2.3).

2.2 Estimation of the parameters

Ergodic means and Rao–Blackwellized estimators. Let θj = (µ
(j)
1 , µ

(j)
2 , ρ(j),κ(j)), j = 1, 2, . . . ,M be

the simulated output and set κ(j) =
∑

κ
(j)
i , j = 1, 2, . . . ,M . Then, under squared error loss, the

Bayes estimator of every (integrable) function h : Θ → R can be approximated by the ergodic mean
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M−1
∑M

j=1 h(θj) which by the ergodic theorem converges almost surely to Eπ[h(θ)] =
∫

h(θ)π(dθ). In

particular, the Bayes estimators of λ1, λ2, ρ, φ = λ1/λ2 can be approximated by

λ̂i =
1

M

M
∑

j=1

µ
(j)
i (1 − ρ(j)), i = 1, 2, ρ̂ =

1

M

M
∑

j=1

ρ(j), φ̂ =
1

M

M
∑

j=1

µ
(j)
1 /µ

(j)
2 ,

respectively. Moreover, one can also consider the Rao–Blackwellized estimators

λ̃i =
1

M

M
∑

j=1

E

{

µ
(j)
i (1 − ρ(j))

∣

∣

∣
κ(j)

} d3 + nv

di + si
=

1

M

M
∑

j=1

ci + nv + κ(j)

c3 + d3 + nv + κ(j)
, i = 1, 2,

ρ̃ =
1

M

M
∑

j=1

E

{

ρ(j)
∣

∣

∣
κ(j)

}

=
1

M

M
∑

j=1

c3 + κ(j)

c3 + d3 + nv + κ(j)
,

φ̃ =
1

M

M
∑

j=1

E

{

µ
(j)
1 /µ

(j)
2

∣

∣

∣
κ(j)

} d2 + s2
d1 + s1

=
1

M

M
∑

j=1

c1 + nv + κ(j)

c2 + nv + κ(j) − 1
.

The results of Liu et al. (1994) ensure that in stationary Markov chains constructed by data augmentation,

as is (2), estimators arising by Rao–Blackwellization reduce the asymptotic variances.

Remark. Note that the forms of Rao–Blackwellized estimators together with their almost sure con-

vergence to the true values give explicit bounds for the Bayes estimators. Since 0 ≤ κ(j) < ∞,

∀ j = 1, 2, . . . ,M , we have that

d3 + nv

di + si
min

{

1,
ci + nv

c3 + d3 + nv

}

≤ λ̂i ≤ d3 + nv

di + si
max

{

1,
ci + nv

c3 + d3 + nv

}

(a.s.), i = 1, 2,

c3
c3 + d3 + nv

≤ ρ̂ < 1 (a.s.),

d2 + s2
d1 + s1

min

{

1,
c1 + nv

c2 + nv − 1

}

≤ φ̂ ≤ d2 + s2
d1 + s1

max

{

1,
c1 + nv

c2 + nv − 1

}

(a.s.).

In the same way, it can be seen that the above parametic functions have finite higher moments. We

actually need moments of order 2 + ε for some ε > 0 for the central limit theorem to hold for the above

ergodic means. Thus, if we could estimate consistently the asymptotic variances we would also obtain

corresponding confidence intervals for the MCMC approximations.

Regenerative sampling. In order to obtain consistent estimators of the variances of various ergodic means

we will use the method of Mykland et al. (1995). It is applicable since the chain is geometrically ergodic

(see Hobert et al., 2002). Recall that the method proceeds as follows. Assume the existence of a

measurable function s(·) and a probability measure Q on B(Θ) such that

P (θ, A) ≥ s(θ)Q(A), ∀ θ ∈ Θ, A ∈ B(Θ). (9)

Note that the existence of such an s(·) and Q has been already shown in Subsection 2.1 it can be

taken s(θ) = εI[0,κ∗](κ) and Q the corresponding “infimum” probability distribution. Consider the chain

(θ1, δ1), (θ2, δ2), . . ., where each δj is a Bernoulli random variate with probability of success s(θj), and

θ1 ∼ Q(·). Setting A = Θ in (9) it is seen that s(·) ∈ [0, 1], hence the δ’s are well defined. Now, if

δj = 1 then draw θj+1 from Q(·) independently of the past whereas if δj = 0 then draw θj+1 from the

residual distribution R(θj , ·) = {P (θj , ·) − s(θj)Q(·)}{1 − s(θj)}−1. Notice that the transition kernel

of the marginal chain θ1,θ2, . . . remains P (θ, ·). Clearly, the (random) times for which θj+1 ∼ Q(·)
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constitute regeneration times. Let 1 = τ1 < . . . < τR < τR+1 be the first R + 1 regeneration times and

set Nt = τt+1 − τt, St =
∑τt+1−1

j=τt
h(θj), t = 1, 2, . . . , R. The pairs (N1, S1), (N2, S2), . . . , (NR, SR) are iid

and as R → ∞,

S̄/N̄ =
1

τR+1

τR+1−1
∑

j=1

h(θj)
a.s−→ Eπ(h) and R1/2[S̄/N̄ − Eπ(h)]

w−→ N (0, σ2
h),

where σ2
h = EQ{[S1−N1Eπ(h)]2}/{EQ(N1)}2. The asymptotic variance σ2

h can be consistently estimated

by

σ̂2
h =

∑R
t=1(St −Nt S̄/N̄)2

RN̄2
. (10)

Note finally, that assuming P (θ, ·) and Q(·) have densities p(θ, ·) and q(·), the Q–draws can be avoided

using the following procedure. After drawing θj generate θj+1 rather than δj from the original kernel

P (θj , ·). Then, draw δj conditional on θj , θj+1, that is, generate a Bernoulli random variate with

probability of success s(θj)q(θj+1)/p(θj ,θj+1). If it takes the value one a regeneration at time j+ 1 has

been occured. The same method can be used to avoid drawing θ1 from Q. Just start from an arbitrary

distribution and proceed as before until the first regeneration. Then set θ1 equal to this draw and discard

all previous values.

Returning back to our context consider κ1, κ2 ∈ Z+ with κ1 < κ2 and set C = (0,∞)2 × (0, 1)×{κ ∈
Zn

+ : κ1 ≤∑κi ≤ κ2} ∈ B(Θ). Let ε, q(·) be as in (7), (8) respectively but with f ∗’s now denoting the

infimums over [κ1, κ2] rather than [0, κ∗]. Let also s(θ) = εIC(θ) = εI[κ1,κ2](
∑

κi). Then it can be seen

that (9) holds. Note that ε does not need to be calculated at all. Set

µ∗

i =
1

di + si

{

Γ(ci + nv + κ2)

Γ(ci + nv + κ1)

}
1

κ2−κ1

, i = 1, 2, ρ∗ =

{

Γ(c3 + κ1 + d3 + nv)Γ(c3 + κ2)

Γ(c3 + κ2 + d3 + nv)Γ(c3 + κ1)

}
1

κ2−κ1

and starting with an arbitrary κ ∈ Zn
+ with κ =

∑

κi /∈ [κ1, κ2] run sequentially (2). When κ hits [κ1, κ2]

draw the next µ1, µ2, ρ in the usual way followed by a Bernoulli random variate δ with success probability

Γ(c1 + nv + κ)Γ(c2 + nv + κ)Γ(c3 + κ̃(ρ) + d3 + nv)Γ(c3 + κ)

Γ(c1 + nv + κ̃(µ1))Γ(c2 + nv + κ̃(µ2))Γ(c3 + κ+ d3 + nv)Γ(c3 + κ̃(ρ))
× µ

κ̃(µ1)−κ
1 µ

κ̃(µ2)−κ
2 ρκ̃(ρ)−κ,

where κ̃(µ1) = κ2I(0,µ∗

1 ](µ1) + κ1I(µ∗

1 ,∞)(µ1) and similarly for κ̃(µ2) and κ̃(ρ). If δ = 1 then set θ1 =

(µ1, µ2, ρ,κ
′), κ

′ being the next κ value generated else continue until θ1 is obtained.

Due to the ergodicity of the chain κ1, κ2 may be arbitrary since the set [κ1, κ2] will be hit infinitely

often. However, in practice the set should be chosen to have small waiting times but on the other hand

not being too wide, or else ε will be negligible. So, it is suggested to inspect the
∑

κi values from a

preliminary run of (2) in order to choose an appropriate set.

2.3 Example: The Missouri river flow data

We consider for illustration purposes the Missouri river flow data analyzed also in a different context by

Nagaraja et al. (2002). The data represent annual instantaneous peak flow measurements (in 10−3 cubic

feets per second) at Booneville, MO and Hermann, MO, during 1898–1997. Despite their time series

nature, Nagaraja et al. (2002) justify why the data can be considered as a random sample from some

bivariate distribution.

In Figure 1 one can see the scatterplot and gamma P-P plots of the data. The gamma distribution

seems to fit well to their marginal distributions and the scatterplot has a typical form of KBGD with
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Figure 1: Figures of Missouri river flow data; (a) Scatterplot of Booneville (horizontal axis) vs. Hermann
(vertical axis) peak flow measurements; (b) Gamma P-P plot of Booneville measurements; (c) Gamma
P-P plot of Hermann measurements.

Parameter Bayes estimate Std. error 99% c.i.

λ1 0.019234 10−8 [0.019224, 0.019245]
λ2 0.015764 10−8 [0.015755, 0.015733]
φ 1.220355 5.5 × 10−6 [1.220086, 1.220625]
ρ 0.896377 1.1 × 10−3 [0.892554, 0.900200]

Table 1: Bayes estimates for the Missouri river flow data

large correlation. We chose v = 5.4 for the latter distribution which is the mean of the maximum

likelihood estimators of the two marginal gamma shape parameters and ci = di = 0.001, i = 1, 2,

c3 = d3 = 0.5 for the priors’ hyperparameters. Then, a and b in (6) are approximately 0.9955 and 537.6

and thus 2b/(1 − a) ≈ 238933. Unfortunately, for any κ∗ > 238933, ε is negligible making Rosenthal’s

(1995) bound on total variation practically uncalculatable. On the other hand, the regenerative sampling

algorithm was run for R = 500 regenerations with [κ1, κ2] = [4750, 4780]. The mean number of iterations

per regeneration was 96.64 and its coefficient of variation 0.8% suggesting that the variance estimates in

(10) are adequate (see Mykland et al., 1995). Detailed results are provided in Table 1.

3 Bayesian hypothesis tests using MCMC

Since KBGD degenerates to the product of two independent gamma distributions for ρ = 0, testing the

hypothesis H0 : ρ = 0 versus H1 : ρ 6= 0 is of major interest. A test of secondary interest may be based

on assessing whether the parameters λ1 and λ2 (or equivalently µ1 and µ2) of KBGD are equal.

According to the Bayesian paradigm, hypothesis testing concerning two competing models m0 and

m1 are based on posterior models odds

PO01 =
f(m0|data)

f(m1|data)

f(data|m0)

f(data|m1)
× f(m0)

f(m1)
,

where f(m) and f(m|data) are the prior and posterior probabilities of model m and f(data|m) is the

marginal likelihood of model. When no information is available, a default choice for prior model proba-

bilities is f(m0) = f(m1) = 1/2. In this case the posterior model odds degenerates to the Bayes factor.
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If we are interested in the comparison of more than two competing models then inference is based on the

posterior distribution f(m|data) itself.

The integrals involved in the calculation of posterior model odds are analytically tractable only in

certain restricted cases, therefore we may calculate them by asymptotic approximations or Monte Carlo

methods. Here we facilitate the reversible jump Markov chain Monte Carlo (RJMCMC) algorithm of

Green (1995) in order to evaluate various models based on KBGD.

3.1 Using reversible jump for KBGD

RJMCMC is a generalization of simple Metropolis algorithms sampling between models of different di-

mensions. Assume that model m has associated parameter vector θ(m) of dimension d(θ(m)) and denote

the current state of the Markov chain by (m,θ(m)). Then the algorithm is described by the following

steps:

• Generate the model parameters θ(m) of model m from f(θ(m)|data,m).

• Propose a new model m′ with probability j(m,m′).

• Generate u (which can be of lower dimension than θ
′

(m′)) from a specified proposal density q(u|θ(m),m,m
′).

• Set (θ′

(m′),u
′) = gm,m′(θ(m),u), where gm,m′ is a specified invertible function. Hence d(θ(m)) +

d(u) = d(θ′

(m′)) + d(u′).

• Accept the proposed move to model m′ with probability

α = min

{

1,
f(data|m′,θ′

(m′))f(θ′

(m′)|m′)f(m′)j(m′,m)q(u′|θ(m),m
′,m)

f(data|m,θ(m))f(θ(m)|m)f(m)j(m,m′)q(u|θ(m′),m,m′)

∣

∣

∣

∣

∂g(θ(m),u)

∂(θ(m),u)

∣

∣

∣

∣

}

.

In this section we focus on the comparison of four models: the independent gamma model (m1) with

common λ1 = λ2 = λ and (parameter vector) θ(m1) = (λ), KBGD (m2) with common λ1 = λ2 = λ

and θ(m2) = (λ, ρ), the independent gamma model (m3) with λ1 6= λ2 and θ(m3) = (λ1, λ2) and the

unrestricted KBGD (m4) with θ(m4) = (λ1, λ2, ρ).

We consider the following prior structure for the parameters of each model:

f(θ(m1)|m1) = f(λ|m1),

f(θ(m2)|m2) = f(λ, ρ|m2) = f(λ|ρ,m2)f(ρ|m2),

f(θ(m3)|m3) = f(λ1, λ2|m3) = f(λ1|m3)f(λ2|m3),

f(θ(m4)|m4) = f(λ1, λ2, ρ|m4) = f(λ1|ρ,m4)f(λ2|ρ,m4)f(ρ|m4),

where

f(λ|mj) ∼ G(c0j , d0j) for j = 1, 2, (11)

f(λi|ρ,mj) ∼ G(cij , dij/(1 − ρ)) for i = 1, 2, j = 3, 4, (12)

f(ρ|mj) ∼ Beta(c3j , d3j) for j = 2, 4. (13)

In order to make the MCMC more flexible we split the model selection procedure in two steps by introduc-

ing two binary latent indicators γ1 and γ2 taking values one if ρ 6= 0 and λ1 6= λ2, respectively, and zero

otherwise. The model indicator m is simply a function of the two binary indicators with m = 1+γ1+2γ2.

We construct a RJMCMC algorithm which can be summarized as follows.
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1. (a) Propose γ′1 = 1 − γ1 with probability one.

(b) If γ1 = 0 then generate ρ from qρ(ρ) = Beta(ãρ, b̃ρ), where ãρ and b̃ρ are tuning parameters of

the RJMCMC algorithm and are specified appropriately to achieve high acceptance rate. For

details on their specification see Subsection 3.3.

(c) Accept the proposed move with probability α = min
(

1, A1−2γ1
)

where

A =

[

1

(ρλ1λ2)n
∏

xiyi

]

v−1
2

exp

{

−ρ(λ1s1 + λ2s2)

1 − ρ

}

[

n
∏

i=1

Iv−1

(

2
√
ρλ1λ2xiyi

1 − ρ

)

]

(

Γ(v)

1− ρ

)n

×f(λ1|ρ, γ1 = 1, γ2)

f(λ1|γ1 = 0, γ2)

(

f(λ2|ρ, γ1 = 1, γ2)

f(λ2|γ1 = 0, γ2)

)γ2 f(ρ|γ1 = 1, γ2)

qρ(ρ)

f(γ1 = 1, γ2)

f(γ1 = 0, γ2)

(d) If the proposed move is accepted then:

i. If γ′1 = 1 then generate κi ∼ Bes(v − 1, 2
√

ρλ1λ2xiyi/(1 − ρ)), i = 1, . . . , n.

ii. If γ′1 = 0 then set κi = 0, i = 1, . . . , n.

2. (a) Propose γ′2 = 1 − γ2 with probability one.

(b) i. If γ2 = 0 then

• Generate u from qu(u) ∼ G(ãu, b̃u), where ãu and b̃u are RJMCMC tuning parameters

and are specified in Subsection 3.3.

• Set (λ1, λ2) = g(λ, u). We facilitate the transformation based on the geometric mean

resulting to the RJMCMC setup (λ1, λ2) = (λ
√
u, λ/

√
u)

ii. If γ2 = 1 then set (λ, u) = g−1(λ1, λ2). For the geometric mean transformation we have

(λ, u) = (
√
λ1λ2, λ1/λ2).

(c) Accept the proposed move with probability α = min
(

1, A1−2γ2
)

where A is given by

A =

(

λ1λ2

λ2

)nv+
∑

κi

exp

{

(λ− λ1)s1 + (λ− λ2)s2
1 − ρ

}

f(λ1|ρ, γ1, γ2 = 1)

f(λ|ρ, γ1, γ2 = 0)

×f(λ2|ρ, γ1, γ2 = 1)

qu(u)

(

f(ρ|γ1, γ2 = 1)

f(ρ|γ1, γ2 = 0)

)γ1 f(γ1, γ2 = 1)

f(γ1, γ2 = 0)

∣

∣

∣

∣

∂g(λ, u)

∂(λ, u)

∣

∣

∣

∣

.

3. Set m = 1 + γ1 + 2γ2.

4. Generate model parameters from the Gibbs steps in (2) with λj = µj(1 − ρ) for j = 1, 2. When

λ1 = λ2 the common λ is generated from a gamma distribution with parameters c0m+2nv+2γ1

∑

κi

and (d0m + s1 + s2)/(1 − ρ).

In Step 1 we consider directly the marginal distribution f(λ1, λ2, ρ|γ1, γ2) eliminating the latent

variables κi. This simplifies the reversible jump step presented in Step 1 considerably, since the two

compared models differ only by one parameter (ρ). The main drawback of this approach is the calculation

of the Bessel function for each data point which is computationally inefficient. Alternatively, we may

construct a RJMCMC keeping the latent data κi. Using such an approach in Step 1 of the above algorithm

we will have to additionally generate κi from qi(κi), i = 1, . . . , n, and then accept the proposed move

with probability α = min
(

1, A1−2γ1
)

with A given by

A =
f(x,y,κ|λ1, λ2, ρ, γ1 = 1, γ2)

f(x,y|λ1, λ2, ρ = 0, γ1 = 0, γ2)

f(λ1|ρ, γ1 = 1, γ2)

f(λ1|γ1 = 0, γ2)

(

f(λ2|ρ, γ1 = 1, γ2)

f(λ2|γ1 = 0, γ2)

)γ2

× f(ρ|γ1 = 1, γ2)

qρ(ρ)
∏n

i=1 qi(κi)

f(γ1 = 1, γ2)

f(γ1 = 0, γ2)
.
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Natural choices for the proposal qi(κi) are the Poisson and negative binomial distributions. On the other

hand, the approach of generating n + 1 additional parameters in each model comparison may lead to a

low acceptance rate and hence to slow down the convergence of the algorithm.

Concerning the proposed algorithm in Step 2, it works efficiently when the posterior distributions of ρ

under models m2 and m4 are close. This may not happen when the sample means x̄ = s1/n and ȳ = s2/n

are far away. In such cases, we will also need to propose new values for ρ in order to jump directly to the

correct posterior distribution. This can be achieved by either proposing the new ρ deterministically (by

a suitable transformation) or probabilistically using proposal densities (see the Metropolized Carlin and

Chib algorithm as described by Dellaportas et al., 2002). Moreover, since we propose new values for ρ,

we should use the marginal likelihood of the KBGD in order to avoid generation of the latent variables

κi. The algorithm (for γ1 = 1) should be modified and therefore after Step 2(b) we generate new ρ using

the following step:

2(c) Generate ρ′ from a proposal qρ,γ2(ρ
′). Set ρ1 = γ2ρ+ (1 − γ2)ρ

′, ρ0 = (1 − γ2)ρ+ γ2ρ
′ and accept

the proposed move with probability α = min
(

1, A1−2γ2
)

where

A =

(

1 − ρ0

1 − ρ1

)n(
ρ0

ρ1

)

n(v−1)
2

exp

{

λ(s1 + s2)

1 − ρ0
− λ1s1 + λ2s2

1 − ρ1

}

×
[

n
∏

i=1

{

Iv−1

(

2
√

ρ1λ1λ2xiyi

1 − ρ1

)

[

Iv−1

(

2λ
√
ρ0xiyi

1 − ρ0

)]−1
}]

f(λ1|ρ1, γ1, γ2 = 1)

f(λ|ρ0, γ1, γ2 = 0)

×f(λ2|ρ1, γ1, γ2 = 1)

qu(u)

(

qρ,γ2=1(ρ0)

qρ,γ2=0(ρ1)

f(ρ1|γ1, γ2 = 1)

f(ρ0|γ1, γ2 = 0)

)γ1 f(γ1, γ2 = 1)

f(γ1, γ2 = 0)
. (14)

If the proposed move is accepted, then we should also generate the new latent variables κi similarly to

Step 1(d).

When ρ is proposed deterministically (for example ρ1 = Cρ0 or ρ1 = ρ0 + C; where C is a constant)

then the ratio of proposals qρ,γ2=1(ρ0)/qρ,γ2=0(ρ1) should be substituted by the corresponding derivative

∂ρ1/∂ρ0. This RJMCMC variation is more general than the approach presented in Step 2 but involves

more laborious computation since in (14) we need to compute the Bessel functions and additionally

generate candidate values for ρ. In the majority of examples we have implemented our algorithm, the

simpler version presented in Step 2 worked efficiently. In general, we suggest to estimate ρ assuming

common and non-common means before running the RJMCMC. If their ratio is close to one then use the

simpler approach of Step 2.

3.2 Specification of prior parameters for model comparison

A challenging and difficult task in Bayesian model comparison and hypothesis testing is the specification

of prior distributions. Difficulties mainly arise due to the behavior of posterior model odds as noted

by Lindley (1957) and Bartlett (1957). Essentially, we cannot use priors with large variance (which are

thought to be noninformative) because in such case we will a posteriori fully support the simplest model.

Since ρ lies in the interval [0, 1) we may use standard noninformative prior distributions without any

major problem. We propose to use a beta prior distribution (13) with c3j = d3j = 1 for j = 2, 4, i.e.

the uniform distribution. Hence focus is given in the specification of prior distributions for λ, λ1 and λ2

which take positive values and consequently any prior expressing low information via an extremely large

variance will activate Lindley–Bartlett paradox as discussed above. In order to specify plausible prior
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distributions for the model comparison of interest we will use two approaches. The first approach uses

“power prior” distributions (see Chen et al., 2000) while the second tries to match the prior distributions

used for different models.

Let us first consider for the independent gamma models m1 and m3 with parameter vectors θm1 = (λ)

and θm3 = (λ1, λ2) that we have a priori imaginary data (x∗,y∗) = ((x∗i , y
∗

i ); i = 1, . . . , n∗). We wish

to use these a priori data for defining weak prior distribution which will be used for our model selection

procedure with our actual data. For this reason, we consider as prior the posterior distribution resulting

by a usual low information prior distribution (denoted by f0) and the a priori “available” data (x∗,y∗)

with likelihood weighted to account for a fraction w of their sample size n∗. Under this approach, the

prior distribution of the parameters λ1 and λ2 for model m3 will be defined by

f(λ1, λ2|x∗,y∗, γ1 = 1, γ2 = 0) ∝ f(x∗,y∗|λ1, λ2, γ1 = 1, γ2 = 0)wf0(λ1, λ2|γ1 = 1, γ2 = 0),

where 0 ≤ w ≤ 1 is a parameter controlling the weight of belief on the prior imaginary data. Usually this

fraction is taken equal to one data point, hence w = 1/(2n∗). More generally, we may set w = ξ/(2n∗),

where ξ is the number of data points that the prior accounts for. When ξ tends to zero, the prior accounts

for a negligible amount of information in the posterior distribution. We choose ξ = 1 as a baseline and

use different values of ξ for sensitivity analysis.

Considering pre–prior distributions λi ∼ G(c∗i , d
∗

i ), i = 1, 2, and w = ξ/(2n∗), the prior distribution

based on these arguements should be given by (12) with

ci3 = c∗i + vξ/2, i = 1, 2, d13 = d∗1 + x̄∗ξ/2 and d23 = d∗2 + ȳ∗ξ/2.

Using the same arguments for model m1 and gamma pre–prior distribution with parameters c∗ and d∗,

we conclude to a gamma prior distribution of type (11) with

c01 = c∗ + vξ and d01 = d∗ + (x̄∗ + ȳ∗)ξ/2.

The construction of prior distributions for model m2 and m3 is not as straightforward as for the simpler

case of the independent gamma distributions. Moreover, since for the parameter ρ we wish to implement

a uniform prior, when no information is available, we consider the same procedure for f(x,y|κ, λ1, λ2, ρ).

Hence, assuming the same pre–prior distributions as above, the one point information power prior is

given by

f(λ|κ, ρ,m2) ∼ G
(

c∗ + (v + κ̄∗)ξ, d∗ + 1
2 (x̄∗ + ȳ∗)ξ/(1 − ρ)

)

, (15)

f(λ1|κ, ρ,m4) ∼ G
(

c∗1 + 1
2 (v + κ̄∗)ξ, d∗1 + 1

2 x̄
∗ξ/(1 − ρ)

)

(16)

f(λ2|κ, ρ,m4) ∼ G
(

c∗2 + 1
2 (v + κ̄∗)ξ, d∗2 + 1

2 ȳ
∗ξ/(1 − ρ)

)

. (17)

Since κ
∗ are only latent a priori data we may substitute κ̄∗ by an arbitrary a priori supported value.

We choose κ̄∗ = 0 in order to center our prior round the simpler model without correlation. In order

the pre–prior to be noninformative, we take c∗i = d∗i = c∗ = d∗ equal to a very low positive number.

Moreover, we set x̄∗ = ȳ∗ = ω in order to center our low information prior round the hypothesis of equal

means and let ω varying to examine the robustness of the procedure on different choices of imaginary

prior data. Note that for small values of ω we can claim that we use a low information prior since the

variance will be large.
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3.3 Specification of proposal densities.

Another important topic in constructing an efficient RJMCMC algorithm is the correct specification of

the proposal densities qρ(ρ), qu(u) and qi(κi), i = 1, . . . , n, used in Steps 1 and 2 of the RJMCMC

algorithm described in Subsection 3.1. The most usual way is to estimate the parameters of the proposal

densities using the moments from pilot MCMC runs (see Dellaportas and Forster, 1999 and Dellaportas

et al., 2002). In our case, we run the MCMC for the unrestricted KBGD and set

ãρρ̄{ρ̄(1 − ρ̄)/s2ρ − 1}, b̃ρ = (1 − ρ̄){ρ̄(1 − ρ̄)/s2ρ − 1} and ãu = ū2/s2u, b̃u = ū/s2u,

where ρ̄, s2ρ are the mean and the variance of ρ and ū, s2u are the mean and the variance of λ1/λ2 estimated

from the MCMC pilot run.

3.4 Alternative model adequacy and diagnostic measures.

In order to check the fit of the models one may use a variety of Bayesian p-values given by pi =

P
{

Di(x
rep,yrep,θ(m),m) > Di(x,y,θ(m),m)

}

, where Di is an appropriate statistic. In order to check

the fit of the marginal distributions of x’s and y’s we have adopted χ2 discrepancy quantities, as proposed

by Gelman et al. (1995, p.172):

D1(x,y,θ(m),m) =

n
∑

i=1

(xi − v/λ1)
2

v/λ2
1

and D2(x,y,θ(m),m) =

n
∑

i=1

(yi − v/λ2)
2

v/λ2
2

.

Let us now define x′i = xi/
∑n

k=1 xk, y′i = yi/
∑n

k=1 yk, i = 1, . . . , n. If xi ∼ G(v, λ1) and yi ∼ G(v, λ2),

then (x′1, . . . , x
′

n), (y′1, . . . , y
′

n) will follow the same (Dirichlet) distribution. Hence the differences of their

values should be minor. Therefore the statistics

D3(x,y,θ(m),m) =

n
∑

i=1

|x′i − y′i| and D4(x,y,θ(m),m) = max
i,j

∣

∣x′i − y′j
∣

∣

may indicate cases where x′i and y′i do not come from the same distribution which means that the initial

assumption is violated. Statistic D3 can also be used to identify whether the correlation implied by the

fitted model is plausible since it compares the mean absolute paired distances. Statistic D4 gives more

weight to the tails of the distributions since maximum distances are compared rather than the whole sum

of the distances. If our model does not hold, then the corresponding p-values should either low or high.

Additionally, one can calculate specific quantiles of the predictive distribution and their corresponding

p-values. These will check how close is the predictive distribution to the observed data. Finally, proba-

bilities of more extreme observations (see Gelfand et al., 1992) may be used to trace possible outliers or

surprising observations under the selected model.

4 Illustrative examples

4.1 Simulated Datasets

Six simulated datasets with v = 1 have been used to evaluate the efficiency of our proposed RJMCMC

algorithms. Results based on runs of 60000 iterations, after discarding the first 10000 iterations as burn–

in period, have been obtained for each dataset. For all MCMC runs we have used the prior distributions
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λ1 λ2 φ = λ1/λ2 ρ

1 2 (2.12±0.21) 2.0 (1.96±0.19) 1.00 (1.09±0.15) 0.1 (0.11±0.07)
2 2 (1.96±0.20) 1.8 (1.67±0.17) 1.11 (1.18±0.16) 0.1 (0.11±0.07)
3 1 (0.91±0.09) 1.5 (1.39±0.14) 0.67 (0.66±0.08) 0.1 (0.23±0.10)
4 2 (1.81±0.18) 2.0 (2.12±0.21) 1.00 (0.86±0.07) 0.6 (0.65±0.06)
5 2 (2.10±0.21) 1.8 (1.66±0.17) 1.11 (1.27±0.12) 0.6 (0.54±0.07)
6 1 (0.99±0.10) 1.5 (1.53±0.15) 0.67 (0.65±0.06) 0.6 (0.62±0.06)

Table 2: Actual parameter values (Posterior mean ± standard deviation) for simulated datasets; for all
datasets v = 1.

in (15)–(17) with ω = 1, ξ = 1, c∗ = d∗ = 0 and uniform prior for ρ. We have also generated posterior

summaries using the same prior setup but with ξ small. However, the posterior distributions of λ1, λ2

and ρ did not change. Proposal distributions were specified using pilot runs of model m4 of length of 2000

iterations and 1000 burn–in. Concerning the “jump” between models m2 and m4, the simpler approach

of Step 2 was used and worked efficiently in all simulated datasets. Additionally, prior model probabilities

were tuned to achieve posterior model probabilities in the interval [0.2, 0.3] in order to be able to estimate

log–Bayes factors with sufficient precision. Using this setup the percentage of γ1 changes (or jumps) was

higher than 68% for all simulated datasets while for γ2 was higher than 70% for datasets 1–5 and about

40% for dataset 6. Table 2 summarizes the results for each dataset.

Results of the logarithm of the Bayes factors and the posterior probabilities for all models are given in

Table 3. It is clear that correct models are highly supported using the default prior proposed in Subsection

3.2. In more details, model 1 is highly supported in datasets 1 and 2 with posterior probabilities 0.738

and 0.746, respectively. Both of these datasets were generated using ρ = 0.10 and ratio φ = λ1/λ2 equal

to 1 and 1.11 (posterior means 1.09 and 1.18), respectively. The hypothesis of ρ = 0 is supported with

posterior probabilities of 0.79 and 0.83, respectively, while the hypothesis of λ1 = λ2 is supported with

posterior probabilities of 0.94 and 0.90, respectively.

For the third dataset with ρ = 0.1, φ = 0.67 (posterior means: 0.23 and 0.66), model 4 is highly

supported with posterior probability of 0.65. The hypotheses of ρ 6= 0 and λ1 6= λ2 are supported

with posterior probabilities of 0.69 and 0.92, respectively. The support of ρ 6= 0 here sources from the

relatively high sample correlation. Note the property of Bayesian paradigm to attribute uncertainty on

both hypotheses (0.31 for ρ = 0 vs. 0.69 for ρ 6= 0).

Regarding datasets 4–6, the hypothesis of ρ 6= 0 is strongly supported in all datasets since ρ = 0.6

(posterior means r ≥ 0.54). In more details, model 2 is supported for datasets 4 and 5, while model

4 is supported for dataset 6. For dataset 4, the hypothesis of λ1 = λ2 is highly supported (posterior

probability 0.84) as expected since φ = 1 (posterior mean of φ = 0.86). In dataset 5 the hypothesis of

λ1 = λ2 is marginally supported with posterior probability 0.57. This result seems to be plausible since

φ = 1.11 and its posterior mean was found to be equal to 1.27. Finally, in dataset 6 the hypothesis

of λ1 6= λ2 is strongly supported (posterior probability 0.999) as expected, since φ = 0.67 and the

corresponding posterior mean is equal to 0.62.

In all the above simulated examples, we have also calculated the model diagnostics of Subsection 3.4.

As expected, the results do not indicate any violation of the assumptions. Tables and Figures can be

found at the web address: www.stat-athens.aueb.gr/∼jbn/papers/paper12.htm.
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Simulated Examples
i mi 1 2 3 4 5 6

1 log B41 λ1 = λ2, ρ = 0 -4.09 -3.75 2.67 19.35 13.19 22.10
2 log B42 λ1 = λ2, ρ 6= 0 -2.78 -2.19 2.82 -1.64 -0.29 7.93
3 log B43 λ1 6= λ2, ρ = 0 -1.40 -1.51 0.88 21.59 14.68 20.31

1 f(m1|data) λ1 = λ2, ρ = 0 0.738 0.746 0.045 0.000 0.000 0.000
2 f(m2|data) λ1 = λ2, ρ 6= 0 0.199 0.157 0.039 0.838 0.573 0.001
3 f(m3|data) λ1 6= λ2, ρ = 0 0.050 0.079 0.268 0.000 0.000 0.000
4 f(m4|data) λ1 6= λ2, ρ 6= 0 0.012 0.018 0.648 0.162 0.427 0.999

Table 3: Estimates of posterior model probabilities and log-Bayes Factors of model m4 versus mi, i =
1, 2, 3.

f(ρ) ξ λ1 λ2 ρ

Beta(1, 1) 1 0.01926 (0.00083) 0.01578 (0.00068) 0.910 (0.012)
10−9 0.01925 (0.00083) 0.01577 (0.00068) 0.899 (0.016)

Beta(1/2, 1/2) 1 0.01924 (0.00083) 0.01577 (0.00068) 0.911 (0.012)
10−9 0.01923 (0.00083) 0.01576 (0.00068) 0.900 (0.016)

Table 4: Posterior means (standard deviations) for the Missouri river flow data (10000 iterations; 1000
burn-in).

4.2 The Missouri river flow data (continued)

Consider the Missouri river flow data used in Subsection 2.3. In this dataset, both hypotheses (ρ = 0 and

λ1 = λ2) are useful since we wish to quantify evidence against or in favor of the dependence between the

two measurements and/or equality of the river peak flow rates. Following Subsection 2.3, v is set equal

to 5.4. Initially, we have used two sets of prior distributions to assess the sensitivity of the posterior

distribution on different prior values of ξ. Both prior setups are given by equations (15)–(17) with ω = 1,

c∗ = d∗ = 0 but for the first one we consider ξ = 1 while for the second one ξ = 10−9. In both prior

distributions the uniform prior for ρ was used. The posterior distributions of all parameters were found

to be close for both choices; see Table 4 for posterior summaries from MCMC runs of length 10000 with

additional 1000 iterations as burn–in. Since the posterior distribution is robust when ξ tends to zero we

have decided to use ξ = 1 for the model comparison. Furthermore, we have also considered the above

prior setups using a Beta(1/2, 1/2), instead of uniform, prior distribution for ρ; differences are again

minor (see Table 4).

Concerning the “jump” between models m2 and m4, we have used the more general algorithm that

additionally proposes new values for ρ. This was decided because the sample correlations were found 0.80

and 0.89 under models m2 and m4 respectively. We have tried two approaches: The first one generates ρ

from beta proposals with means 0.80 and 0.89 respectively, while the second simply sets ρ1 = ρ0 + 0.09.

A total of 60000 iterations were considered for all RJMCMC runs discarding the first 10000 as burn-in

period. The chains were tuned to visit all models with probabilities in [0.2, 0.3] and hence being able to

estimate efficiently all Bayes factors. Both approaches were efficient with percentage of accepted jumps

approximately equal to 50% and give equivalent results.

In Table 5 we report results using for ξ = 1 and uniform or Beta(1/2, 1/2) prior for ρ. Results using

both priors are identical, hence we may assume that the effect of using either of the two prior setups is

minimal for this model comparison. From the Bayes factors’ values we clearly see that model m4 with
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f(ρ) log B41 log B42 log B43

Beta(1, 1) 93.9 36.4 91.3
Beta(1/2, 1/2) 94.0 36.6 91.4

Table 5: Logarithm of Bayes factors for the Missouri river flow data (50000 iterations and additional
10000 iterations as burn-in).

λ1 6= λ2 and ρ 6= 0 is strongly supported. Following the interpretation of Kass and Raftery (1995), the

evidence in favor of both hypotheses is very strong.

Concerning the fit indices of Subsection 3.4, all four p-values do not indicate any violation of the

KBGD model assumption. Looking at the quantiles, only the p-value for the first quartile of y (out of

the fourteen calculated) was found to be low indicating a possible misfit of this quantity on the marginal

distribution of y. Finally, only three datapoints were found to have low probability of more extreme

observation. Since the number of observations flagged as possible outliers is low there is no strong

evidence against our fitted KBGD model. Note that the number of potential outliers is much higher for

the two independent gamma models (models m1 and m3). More details on the above quantities can be

fount at www.stat-athens.aueb.gr/∼jbn/papers/paper12.htm .

From a practical point of view, an advantage of our approach is that quantities of interest can be

calculated from the MCMC output. The above results show that the mean annual instantaneous peak

flow measurements at Booneville, MO, and Hermann, MO, cannot be considered as equal and the corre-

sponding measurements are highly correlated. Also note that the posterior values are robust on different

choices of prior parameters (see Table 4) which indicate that the data provide strong information about

the model parameters. Moreover, for water resources management and flood dynamics, it is of interest

to report that, according to our selected model, the probability that the peak flow in Hermann will be

larger than that in Booneville is estimated as 0.85.

5 Discussion

The present paper described Bayesian estimation and hypothesis testing for KBGD and its special case,

Downton’s bivariate exponential distribution. The data augmentation offered by the mixture representa-

tion of the density is used to construct the MCMC scheme. The major advantages of the proposed Gibbs

sampler and augmentation scheme are: Firstly, in all steps we have simple known distributions which

makes the sampler easily implemented. Secondly, the sampling scheme we propose is automatic in the

sense that there is no need for searching a suitable proposal distribution or calibrating the variance of a

simple random walk Metropolis step. Finally, using this augmentation scheme we avoid evaluating the

Bessel function n times in each Metropolis comparison which may cause numerical problems (unexpected

overflows) and considerably slow down the algorithm. This problem will be more intense in the case of

numerical integration. So, our approach, although considerably increases the parameter space, ensures

that there will not be any numerical problems and makes the computation automatic.

Extensions of the model to cover the case when covariates are available, as well as when some obser-

vations are censored can be also developed along the lines described in the paper. Covariates may be

added but in this case Metropolis–Hastings steps are needed in order to generate from the conditional

distributions. Censoring can be treated as usual within the MCMC setting by generating “missing” data

at each iteration. Note also, that we have used the mixture representation of the density in order to
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perform efficient data augmentation.

The proposed methodology can be generalized to more than two dimensions rather easily. For example,

we may define a q–dimensional multivariate gamma distribution with density

f(x|v,λ, ρ) =

∞
∑

κ=0

g(κ|ρ)
q
∏

i=1

f(xi|v + κ, λi/(1 − ρ)).

The case of q = 2 and g(κ|ρ) ∼ NB(v, 1 − ρ) is examined in the present paper. For q = 1 we obtain

a density similar to that of the noncentral gamma. The extension of our proposed methodology to

cover such multivariate models is straightforward. Moreover, we may change or relax the parametric

assumptions on g(κ|ρ) to construct a more general and flexible multivariate gamma distribution.

Finally, we have constructed a trans–dimensional MCMC algorithm (RJMCMC) for evaluating the

posterior model odds and implementing Bayesian hypothesis testing and model selection between com-

peting models. Starting from KBGD one may check whether the two variables are independent, corre-

sponding to the case when ρ = 0, or whether the marginal means are equal corresponding to the case

when λ1 = λ2. The latter is of special importance when the paired observations belong to before and

after observations and we like to examine whether the treatment had an effect. An interesting topic for

further research is the convergence properties of that trans–dimensional Markov chain, which is however

a difficult task. One can argue that since all within–model moves are produced by Gibbs sampling and

hence are always accepted, the whole chain is Harris recurrent (see Roberts and Rosenthal, 2004). On the

other hand, although the simulated Markov chain within each model is geometrically ergodic (for models

1 and 3 we sample directly from the posterior distribution whereas for model 2 the geometric ergodicity

can be proved with similar arguments as in Subsection 2.1), it is not clear whether such a property is

retained in the whole chain due to the complicated expressions of between–model jump probabilities.

APPENDIX

Proof of Lemma 1. Observe first that f(x; a1, b) < f(x; a2, b) if and only if x > x∗. Now, the partial

derivative of f(x; a, b) with respect to a has the sign of log(bx) − ψ(a), where ψ(a) = Γ′(a)/Γ(a) is the

digamma function. Since ψ is strictly increasing, f(x; a, b) is increasing if ψ(a) < log(bx) and decreasing

if ψ(a) > log(bx). Hence, for x ≤ b−1 exp[ψ(a1)], the infimum of f(x; a, b) equals f(x; a2, b), whereas for

x ≥ b−1 exp[ψ(a2)], the infimum of f(x; a, b) equals f(x; a1, b). For b−1 exp[ψ(a1)] ≤ x ≤ b−1 exp[ψ(a2)]

the infimum is the smallest among f(x; a1, b), f(x; a2, b) and this depends on whether x is smaller or

greater than x∗. This completes the proof.

Proof of Lemma 2. Similarly to the proof of Lemma 1, f(x; a1, b) < f(x; a2, b) if and only if x > x∗. The

partial derivative of f(x; a, b) with respect to a has the sign of ψ(a+ b) − ψ(a) + logx. After observing

that ψ(a+ b) − ψ(a) is strictly decreasing in a for any b > 0, the proof proceeds as before.
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