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Abstract

The Label Switching is a well-known problem occuring in MCMC outputs in Bayesian
mixture modelling. In this paper we propose a formal solution to this problem by considering
the space of the artificial allocation variables. We show that there exist certain subsets of the
allocation space leading to a class of nonsymmetric distributions that have the same support
with the symmetric posterior distribution and can reproduce it by simply permutating the
labels. Moreover, we select one of these distributions as a solution to the label switching
problem using the simple matching distance between the artificial allocation variables. The
proposed algorithm can be used in any mixture model and its computational cost depends on
the length of the simulated chain but not on the parameter space dimension. Real and simu-
lated data examples are provided in both univariate and multivariate settings. Supplemental
material for this article is available online.

Keywords: Mixtures of distributions; Markov chain Monte Carlo; label switching problem; data
augmentation; Pivotal Reordering algorithm; genuine multimodality.

1 Introduction

Assume that the observed data ® = (xi,...,x,) is the realization of a random sample from a

finite mixture of distributions,

k

XiNf(fE|p,0):ijf(l';0j), 1=1,...,n, (1)

J=1
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where the weights p = (p1,...,pr) are positive and sum to one and 8 = (6,...,0;) are the
component specific parameters and may be either univariate or multivariate quantities such as
vectors or matrices. Throughout this paper, the number of components £ is assumed to be
known. In many cases, it is convenient to assume that each observation x; has arised from
one of the k components, say component z; € {1,... k}. Then, z,..., 2, can be considered as
realizations of corresponding independent and identically distributed random variables 71, ..., Z,
with probability mass function P(Z; = j|p) =p;, j=1,...,k, for i =1,...,n. This means that,
conditional on Z; = j, X; is distributed according to the jth mixture component, f(x;6;). Notice
that z1,..., 2, are unobserved (otherwise (1) would be no longer a mixture of distributions) and
so they need to be treated as missing data.

The EM algorithm is a standard frequentist method for estimation in missing data models
and is guaranteed to converge to a local maximum of the likelihood. On the other hand, in
a Bayesian setting, the Gibbs sampler can be used in order to simulate a Markov chain with
the posterior as limit distribution. In the case of mixtures, both approaches fully exploit the
missing data structure described above; at each step, the EM algorithm maximizes the complete
likelihood function conditional on the expected values of the latent variables while the Gibbs
sampler simulates the values of 7y, ..., Z, from their full conditional posterior distributions.

An important feature of a mixture model is that the likelihood is invariant under permutations
of the components’ indices. In a Bayesian setup, if the prior information for the parameters (p;, 6;)
is the same for all component labels j = 1,..., k, then the same holds for the posterior distribution
as well. In such cases it turns out that the parameters are not identifiable. When MCMC methods
are used for simulation from the posterior distribution, this nonidentifiability leads to the so-called
label switching phenomenon, the presence of which has both pros and cons. While it serves as
a necessary condition for the convergence of the MCMC algorithms, at the same time renders
the parameter estimation procedure non-trivial. In the literature many approaches have been
proposed to deal with this phenomenon varying from simple artificial identifiability constraints
(Diebolt and Robert, 1994, Richardson and Green, 1997, Frithwirth-Schnatter, 2001) to more
sophisticated algorithms based on the Kullback-Leibler divergence (Stephens, 1997a, 2000) or on
label invariant loss functions (Celeux et al., 2000) yet none of them is both simple and efficient.

In what follows, we propose a simple method that operates on the space of the latent variables



21, .., 2, and succesfully solves the label switching problem. It has many advantages compared
to previous approaches; in particular, it requires small amount of computational effort and is not
affected by the dimensionality of the parameter space. Moreover, in the case where the posterior
distribution exhibits genuine multimodality, the succesful solution of the label switching problem
allows to efficiently post-processing the reordered output by some standard clustering algorithm
(e.g. the K-means clustering algorithm) in order to reveal all minor modes provided that they
have been explored by the original sampler. Another advantage of the succesful solution is that it
leads to better estimates for the parameters that can be used directly in order to obtain a good
plug-in density estimate of the posterior distribution.

The rest of the paper is organized as follows. In Section 2, previous approaches for solving the
label switching phenomenon are briefly described. The Equivalence Classes Representatives (ECR)
algorithm is introduced in Section 3. The approach is justified by providing a rather new expression
of the posterior distribution as an equally weighted mixture, and showing that the algorithm
produces a sequence that converges to one of this mixture’s components. Furthermore, by using
ideas from the Pivotal Reordering algorithm of Marin et al. (2005), a practical implementation
of ECR algorithm is suggested. In Section 4, the perfomance of the method is compared with
that of previous ones in both univariate and multivariate settings. The paper concludes in Section
5 with a discussion. An appendix containing proofs and useful lemmas can be found online as

supplemental material.

2 Label switching phenomenon and previous solutions

Let 7y be the set of permutations of the component indices {1, ..., k}. For some 7 = (t1,...,t) €
7}, consider the corresponding permutation of the parameter vector 7(p, 0) = (piy, .. ., Deys Oty - - -, 01, )-
The root of the label switching phenomenon is the fact that the likelihood L(p, 0|x) = [ [, {p1f(z:; 61)+
oo+ pef(x;;0k)} is invariant with respect to the permutations of the component labels as it is
obvious that L(p, 8|x) = L(7(p, 0)|x), V7 € T} (see Stephens, 2000).

In a Bayesian analysis, if the prior distribution does not distinguish the component parameters
between each other (which is the most common case), then the resulting posterior distribution
will be invariant in the permutations of the labels, since it will be proportional to the product of a

symmetric likelihood with a symmetric prior distribution. In other words, the parameters are not



marginally identifiable as their marginal distributions are exactly the same. Hence, if a sample is
simulated from the posterior distribution, the standard method of ergodic averages for estimating
the weights and the component specific parameters will lead to nonsensible estimates as they will
be the same for every mixture component.

It is desirable for MCMC algorithms to properly explore the posterior distribution, and what
we can at least demand is the presence of the label switching phenomenon. However, it is well-
known that the Gibbs sampler rarely switches between the symmetric modes. In situations where
no label switching occurs, proper label switching moves can be incorporated to guarantee the
presence of the phenomenon (see Papaspiliopoulos and Roberts, 2008). On the other hand at
the same time we need a simple method to “undo” the label switching in order to derive proper
estimates and this can be done by applying suitable permutations to the simulated values. It turns
out that this is equivalent to choosing one of the symmetric modes and switching all simulated
values to this particular one.

Below, we briefly review some known approaches which attempt to solve the label switching

problem.

2.1 Artificial Identifiability Constraints

An identifiability constraint (IC) is a condition on the parameter space of (p, @) which is satisfied
by only one permutation of the parameters. ICs were used, among others, by Diebolt and Robert
(1994) and Richardson and Green (1997). They have come under strong criticism in the literature
(see for example Celeux, 1997, Celeux et al., 2000, and Stephens, 1997a, 1997b, 2000). One
problem with this approach is the choice of the constraint. A more general difficulty of using 1Cs
occurs in multivariate problems. Moreover there are situations where the posterior distribution
is genuinely multimodal and no IC can isolate both its main and minor modes succesfully (see
e.g. Griin and Leisch, 2009, Section 6.1).

An alternative approach was provided by Frithwirth-Schnatter (2001) who used a random
permutation sampler (RPS) in order to ensure that all £! symmetric modes have been visited.
Frithwirth-Schnatter then applied exploratory data analysis on a preliminary MCMC run from
the RPS in order to find suitable identifiability constraints that separate the components between

them. Afterwards, a constrained permutation sampler is used to produce a sample from the



constrained posterior distribution, that is, the posterior distribution constrained to the subset of
the parameter space that satisfies the artificial IC chosen on the previous step. Nevertheless, the

previous drawbacks are present in this case as well.

2.2 Pivotal Reordering Algorithm

A simple method to undo the label switching without imposing an identifiability constraint is the
Pivotal Reordering algorithm introduced by Marin et al. (2005) (see also Marin and Robert, 2007).
The Monte Carlo approximation of the Maximum A Posteriori (MAP) estimate, i.e., the simulated
value that maximizes the posterior distribution, is used as a pivot to reorder all simulated points
by simply minimizing a certain distance in the parameter space. In the case of euclidean distance,
this task is equivalent to the maximization of the canonical scalar product. The approach works
well in simple cases, but in cases of genuine multimodality it has some drawbacks due to the
inability of the MAP estimate to accomodate competing explanations of the data (cf. Jasra et al.,

2005). This is illustrated via some examples in Section 4.

2.3 Kullback—Leibler divergence based algorithms

Stephens (1997a, 2000) developed an algorithm that makes the permuted sample points to agree as
much as possible on the n x k matrix of classification probabilities 7;; = p; f(2:]6;)/ S5y pif (:|6).
Stephens measures the distance between two matrices of classification probabilities IT = (7;;) and

@ = (gi;) using the Kullback-Leibler (KL) divergence D(II||Q) = >, Z?Zl ;5 log ZT’; Based on
a simulated output of length M, the algorithm finds suitable permutations 73, t = 1,..., M, and a
matrix of classification probabilitites II in order to minimize D = SM D(r IO \ﬁ) As Stephens
notes, this algorithm may be computationally quite demanding in memory. Recently, Griin and
Leisch (2009) proposed a relabelling and clustering approach extending the algorithm of Stephens

to cases where genuine multimodality takes place. More specifically, they introduced a method

where the mode allocations and the relabelling of components are silmutaneously determined.



2.4 Label Invariant Loss Functions

A fully decision theoretic approach has been introduced by Celeux et al. (2000) and applied also
by Hurn et al. (2003). The method proceeds by defining a loss function that is invariant to the
labelling and then minimizing the posterior expected loss. Typically, the minimization step cannot
be performed analytically, and so stochastic implementation methods (e.g., simulated annealing)
should be implemented.

From a Bayesian point of view, this method is more satisfactory than the previous ones since
inference is drawn conditional solely on the data. On the other hand, its main drawback is the
high computational cost. A second drawback is the fact that the minimization of the posterior
expected risk may not be always feasible restricting possibly the applicability of the method to a
class of loss functions that may not make sense for the decision problem at hand (see Jasra, et al.,

2005).

The overall message is that there is no solution to the label switching problem that is both
simple and efficient to be applied in general settings. Therefore, a method that succesfully solves

the problem and requires little computational effort is needed.

3 The Equivalence Classes Representatives Algorithm

In this section we describe a simple yet efficient method for solving the label switching problem.

In order to justify it, a deeper insight to the posterior distribution will be useful.

3.1 A mixture representation of the posterior distribution

Note that the posterior distribution of (p, @) can be expressed as
f(p,6l) = > _w(zlz)f(p, Oz, 2) (2)
z€Z
where w(z|x) denotes the posterior weight of the allocation vector z, and f(p, 8|z, z) denotes the

posterior distribution of (p, 8) given (x, z) (see Marin et al., 2005). In what follows, everything is

based on permutations of the allocations. So, in order to be strict we give the following definition.



Definition 3.1 Let 7 = (ty,...,tx) € Tx, be a permutation of the index set. The corresponding
relabelling Tz of the allocation vector z = (z1,...,2,) € Z = {1,...,k}" is given by 72 =

(toy,..sts,) € 2.

Note that when the components are not labelled, it holds w(7z|x) = w(z|x) for all 7 € T}
and z € Z, and this results in a posterior distribution that is symmetric with respect to the
permutations of the labels. It is easy to see that Definition 3.1 implies an equivalence relation on

the allocation space Z.

Definition 3.2 Two allocation vectors zi,zs € Z will be said to be equivalent if there exists

T € Ti such that z; = Tz4.

Let 2, = {7z : 7 € T;} denote the equivalence class of z € Z. It is easy to see that =,
contains k!/(k — ko(z))! elements, where kq(z) denotes the number of nonempty components for a
given allocation vector z. Note that using an inclusion—exclusion argument, it can be concluded
that the total number of classes (for given k and n) equals ) 7, (i"/i!) 3 5=(—1)’/j!. Consider
now an arbitrary set 2, consisting of exactly one representative from each equivalence class and

let

SLEEDS L bl ). )

EASE]
It is easy to verify that the weights k! w(z|x)/(k — ko(2))! sum to one when z € Z,. Therefore,
fz,(p,0|x) is a probability density function with the same support as f(p,8|x), since it is a
mixture of the distributions f(p, 8|x, z), for z € Z,. Notice here that it differs from the conditional

posterior distribution of (p, 8) given z € Z;. Observe also that fz, is nonsymmetric for any choice

of Z,. Moreover, it holds the following.

Lemma 3.1 The posterior distribution of (p, @) can be expressed as

F(p.Ol2) = & 3 f2, (7(p, 0)|2) (1

T€T

for any choice of the equivalence classes representatives Z.

Lemma 3.1 shows that the posterior distribution of (p, @) can be written as an equally weighted

mixture of nonsymmetric distributions. This representation has a fruitful interpretation in terms of
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the label switching phenomenon. First, we conclude that a sample from the distribution fz, (p, 8|x)
is sufficient to produce a sample from the posterior distribution f(p,@|x) and this can be done
simply by permuting the labels of the simulated values, as expression (4) shows. More important
is the reverse direction. Assume for convenience that the sampler uses data augmentation. (This
is actually not a restriction since in the opposite case the output can be afterwards augmented as
described in Section 5.) If we have obtained a sample from the symmetric posterior distribution,
we are able to produce a sample from fz (p, @|x) according to the following scheme: Suppose that
at the ith iteration of the original sampler we simulate (2, (p, 8)®)) with 2 € Z. Let 7; € 7Ty, be
such that 7,29 € Z,. Obviously, it holds 2 = 7.7 '7,2®). Then, by Lemma A.1 in the Appendix

we get

[(z9,(p.6)|2) = f(r2. 7} (p,0)|2). ()

The last expression is the key in order to obtain a sample from fz (p,@|x) while we have an
(augmented) sample from the posterior distribution of (z,p, @), as shown in Lemma A.2 in the
Appendix. Moreover, by setting 7, := {7 € 7}, : Tz € 2y} for any z € Z, we have the following

convergence result.

Proposition 3.1 Let (29, (p,0)"), i =1,2,... be a Markov chain with limit distribution f(z,p,0|x).
For all v let 7; be uniformly distributed on T,w. Then the limit distribution of the sequence

7' (p,0)Y is fz,(p,0|x).

By the construction of the set Zj, fz, is not symmetric and can produce a sample from
the uncostrained posterior distribution taking into account all permutations of the component
indices. Hence, fz, can be used in order to solve the label switching phenomenon. Moreover, this
distribution has the same support as the (original) posterior distribution. (This is not the case
for the constrained posterior distributions obtained when we adopt the permutation sampler of
Frithwirth-Schnatter, 2001, or the Pivotal Reordering algorithm of Marin et al., 2005.) With that

in mind, our method for solving the label switching problem proceeds as follows.



The Equivalence Classes Representatives (ECR) Algorithm

1. Determine Z, and obtain a simulated output (z,p,8)%, i =1,..., M, with target
distribution f(z,p, 0|x).
2. Fori=1,..., M:
(a) Select randomly some permutation 7; € 7).
(b) Set (2/,p/,0) = (1,29, 77 (p,8Y)).
3. Use the reordered values (p’ ,0')(i), 1 = 1,..., M, in order to approximate the

posterior distributions of the weights and of the component specific parameters.

3.2 Choosing a set of representatives

In order to determine the set of representatives Z,, we must clarify aspects like the difference
between two sets of representatives, what is a “good” set of representatives, and how such a set
can be constructed.

As is apparent from (3), the distribution fz, of the reordered sample of (p, ) is a mixture of
the conditional distributions f(p, 8|z, z), z € Z;. Recall that the weights of this mixture are not
affected by the selection of the representative, since w(rz|x)/(k—ko(72))! is constant with respect
to 7 € 7;,. Hence, two different sets of representatives Z, and Z yield two distributions fz, and fz
that differ only with respect to their components f(p, 0|z, z), z € Zy, and f(p, 0|z, z), z € Z|.
Observe also that if Zy # 72, for all T € 7y, then fz, and fz, typically have completely different
shapes and the first can not be reproduced from the second by applying simply a permutation to
(p. 0).

An efficient solution to the label switching problem must not just break the symmetry of the
posterior distribution but further eliminate as much as possible the influence of all but one of
its symmetric copies. Now, while for any Z, the distribution fz, is nonsymmetric, an arbitrary
selection of the equivalence classes representatives would retain a significant portion of some
symmetric copies’ magnitude. In order to avoid that, the representatives must be selected in such
a way so that all components of fz, have their masses concentrated as much as possible to one
of the k! symmetric high posterior density areas. Clearly, the areas at which the components

concentrate their masses depend on the corresponding allocation vectors z. Moreover, “similar”



z’s will give rise to components which are close to each other. A natural measure of the similarity

of two allocation vectors is the number of their matching allocations:

Definition 3.3 The S similarity measure of two allocation vectors zy = (211, ..., 21n) and z9 =
(221, - - -, 225) 18 defined by S(z1,22) ==Y . I(z1; = 29;), where I(A) is the indicator function of
A.

Obviously, it holds 0 < S(z1, z2) < n. Moreover, notice that n — S(z1, z2) is the simple matching
distance between z; and z,. Note that although more sophisticated measures could be used, S
similarity is perfect for our purposes.

Intuition probably suggests that, in constructing Zj, all representatives (and, by analogy, the
components of fz,) should be chosen to be as much similar as possible to each other. However,
we are interested in switching everything to a particular high posterior density area rather than in
the overall components’ similarity. This can be done by simply selecting an appropriate z* € Z,
include it to Zj, and choosing as representatives the allocations that are most similar to it.

Under this point of view, the determination of Z; reduces to finding a “good” allocation vector
z* which will act as a pivot for the rest classes’ representatives and so, the ECR algorithm can be
seen as a modification of the Pivotal Reordering algorithm of Marin et al. (2005) (see Subsection
2.2) on the set Z. More specifically, suppose that we want to select the representative 7z of some
equivalence class Z,. Define 7(Z,) = argmax,cz, S(72,2") to be the permutation which makes
z as much similar as possible to z* and select 7(Z,)z as the corresponding representative to be
included in Z,. In the case where there are more than one maximizing permutations, 7, 7o, ...,
order Tz, T»z, ... lexicographically and choose as 7(=,) the permutation corresponding to the
first of them. Hence, the set of representatives is given by Z, = U{7(Z.)z; z € Z}. Notice
the difference between the set of possible 7(=.)’s and 7, defined in the previous subsection. The
former serves for defining the particular Z; whilst the latter has a meaning only after Z, has
been defined. On the other hand, the two sets are connected with 7, being a subset of the set of

possible 7(Z,)’s.

3.3 Reordering a simulated output

It is evident that the posterior distribution f(z,p,8|x) has multiple modes as well. Indeed, (5)
implies that if (zMAP) (p, @)MAP)) = (2, p, @)MAP) is a mode, then (72MAP) 7=1(p, §)(MAP)) ig
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also a mode for any permutation 7. Then, an excellent choice for the pivotal value z* would be
2zMAP) " This is justified by (2) and the fact that only few allocations have non-negligible posterior
weight (cf. Casella et al., 2004). However, the computational effort needed for the analytical
evaluation of the modes increases rapidly with the sample size and thus it becomes prohibitive.
Let (z,p,0)%, i = 1,...,M, be a simulated output with target distribution f(z,p,8|x).

Let also 2(MAP)

be the allocation vector that corresponds to the Monte Carlo approximation
of the Maximum a Posteriori estimator (2,p,0)MAP) = argmaxi<i<y f((2,p, 0)@|x). Since
(z,p, 9)(MAP) consistenly estimates a mode of f(z,p, 8|x), as the number of iterations M increases
S (Q(MAP), 72zMAP)) converges to n for some 7 € 7. However, by the discreteness of the allocation

MAP

) and 7zMAP) (

vector, the S similarity of 2! for some 7 € 7) will become sooner or later

equal to n. But recall that all we need in order to apply our approach is a good pivot z* and not

necessarily the “best” one. So, 2(MAP)

is a satifactory choice as well.

With 2™4F) as the pivot, the scenario of existing two (or more) different members of a class
maximizing the S similarity measure (and hence having to choose according to the lexicographical
order) is quite rare. In particular, this has never occured in the various examples we tried. Note
also that for any z € Z it holds 7, = {r = argmax,cz, S(7z, 2M*")}.

Besides the MAP estimate, other valid choices for the pivot are the most probable allocation
and the allocation vector corresponding to the maximum of the complete likelihood. Moreover,
since Z, can be any set of representatives, one can use as a pivot any allocation vector that has
been frequently visited by the MCMC algorithm, provided that n is not very small. In fact, when
we tried these different pivot choices we obtained almost identical results. Finally, we underline
that we avoid more complicated schemes for the determination of Z, because the selection of the
pivot z* has not the drawbacks of the Pivotal Reordering algorithm. Since we are dealing with
the space of artificial allocation variables rather than the parameter space, we can take advantage
of its discrete nature and the small number of the allocations with non-negligible posterior weight.

The latter implies that the majority of classes have almost zero weight and thus they do not

contribute much to the posterior distribution.
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4 Examples

In this section we illustrate our approach via both univariate and multivariate datasets. The first
example shows analytically how the method transforms the posterior distribution. Afterwards,
the method is illustrated via simulated and real datasets while at the same time the results are
compared with those obtained by other approaches as the Pivotal Reordering and KL based
algorithms. In all cases the number of components is assumed to be known. Note that in all
MCMC algorithms a label switching move is added (see Papaspiliopoulos and Roberts, 2008) in
order to ensure the presence of the label switching phenomenon. Finally, the reported standard
errors have been estimated by running the same sampler 100 times independently with different
starting values. All simulations and reorderings have been performed on a Pentium IV using
Fortran 90. The optimal permutations were found using Carpaneto’s (1980) Fortran routine for

solving the assignment problem.

4.1 An exact illustration of the proposed method

We simulated € = (6,12,9,4,6) from a mixture of two Poisson distributions with known and
equal weights, 0.5P(6;) + 0.5P(6;), where 8 = (0,605) = (5,7). We assumed further that 6,6,
are a priori independent with the same prior distribution G(1.2,0.2), that is, gamma with mean
1.2/0.2 = 6. The resulting symmetric posterior distribution of 6y, 65|z is shown in Figure 1(a).
Using Mathematica we found its two symmetric modes at (7.75,6.01) and (6.01,7.75) (indicated by
arrows). In Figures 1(b) and 1(c) we have also plotted the (nonsymmetric) distributions fz,(0|x)
for two different choices of Zjy. In the first case, the classes’ representatives have been randomly
selected whereas in the second case each representative is chosen to be as much similar as possible
to z* = (1,2,2,1, 1) which is the allocation vector corresponding to the maximum of the f(z, 8|x).
Clearly, while in both cases the resulting distributions break the symmetry of the posterior, the
latter should be preferred since the magnitude of the symmetric mode has been totally vanished
in contrast to the former where a significant portion of the symmetric mode is retained.

In general, the apparent modes of a mixture of distributions may be far apart from the modes of
its components. Indeed, in Figure 1(c) we can see that the mode of fz, is at (5.35,8.36). Moreover,
fz, exhibits a minor mode at (7.15,1.00) which is not visible in the posterior distribution. Its

appearence is due to the fact that the posterior probability of an empty component is sufficiently
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Figure 1: (a) The symmetric posterior distribution of 61, 60s]x. (b,c) The distributions fz,(0|x) when
the equivalence classes representatives are selected randomly and by maximizing the S similarity to

z* =(1,2,2,1,1), respectively. (All densities are shown up to the same multiplicative constant.)

large: straightforward calculation yields w(1,1,1,1,1|x) = w(2,2,2,2,2|x) ~ .0394. This is
further justified by the value of the second coordinate of the minor mode which is actually the
mode of the prior. Note that when we explored the posterior distribution using the Gibbs sampler
the results produced by the ECR algorithm totally agreed with the theoretical ones. In particular,
the reordered output explores the minor mode at the correct rate; the weight assigned by a K-
means clustering algorithm to the corresponding cluster was approximately 7.97%, that is, almost

twice the weight of an empty component as expected.

4.2 ECR Algorithm versus Pivotal Reordering Algorithm

In order to illustrate the differences between the ECR algorithm and the standard Pivotal Reorder-
ing algorithm of Marin et al. (2005) we simulated data from two mixtures of normal distributions,

namely,

0.10A/(—20, 1) + 0.65\(20, 3) + 0.25\ (21, 0.5), (6)
0.20A/(19,5) + 0.20A/(19, 1) + 0.25N(23, 1) + 0.20A/(29, 0.5) + 0.15N/(33, 2). (7)

From (6) we simulated n = 160 observations while from (7) we simulated n = 600 observations. In
both cases we used the random beta model of Richardson and Green (1997) but with the number
of components fixed at their true values. Afterwards, the simulated samples (after burn-in) were
reordered according to both the Pivotal Reordering and ECR algorithms. In the first two rows of
Figure 2 we plot the reordered raw values of the means for the two methods as well as the data

histograms together with the corresponding plug-in density estimates. Moreover, the resulting
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(a) (b) ()
Figure 2: Up: Results for mixture (6); Middle: Results for mixture (7); Down: Results for galaxy
dataset. Reordered values according to (a) Pivotal Reordering and (b) ECR algorithms. (c) Plug-in
density estimates after reordering according to Pivotal Reordering algorithm (dotted line) and ECR

algorithm (solid line) and the true pdf (dashed line).

ergodic averages are presented in the first two rows of Table 1. Clearly, there are major differences
between the results obtained by the two reordering schemes and this is due to the fact that for
both datasets the posterior distribution has minor modes, i.e., it exhibits genuine multimodality.
Notice that in mixture (6), the second and third components are close to each other. Therefore,
the sampler is expected to often combine them to one, leaving one component empty with its
parameter values generated from the prior distribution. Indeed, in 20000 iterations (after burn-
in), the relative frequency of the existence of an empty component was almost 17%. Since the
means’ prior variance is large (recall that Richardson and Green’s choice for the prior variance is
the square of the data midrange), a value for the mean generated from the prior has 95% probability
to lie in the interval (—110,151). So, the generated value for the mean of an empty component
may be quite far from the corresponding high posterior density area. Under the standard Pivotal
Reordering algorithm, if the generated value from the prior is too small (resp., large) then the

empty component will be relabelled as the one corresponding to the smallest (resp., largest)
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Pivotal Reordering ECR
E(u|m) 23.08 17.62 —20.59 2046 19.61 —19.96
(.419) (.391) (.122) (.016) (.194) (.003)
E(02|m) 1.83 227 142 2.01 215 1.36
(.278) (.270) (.021) (.025) (.071) (.009)
E(plz) | 522 418  .060 723 216 .061
(.016) (.016) (.000) (.011) (.011) (.000)
E(u|m) 21.61 30.06 18.40 33.25 25.82 2296 25.28 18.80 3295 29.13
(.260) (.179) (.101) (.059) (.536) (.005) (1.007) (.009) (.025) (.007)
E(o?|x)| 147 1.05 186 1.69 0.80 1.01 157 192 180 0.56
(.115) (.109) (.063) (.064) (.062) (.006) (.056) (.015) .(.038) (.008)
E(plz) | 222 141 317 128 .192 255 070  .360 .138 .178
(.001) (.010) (.015) (.005) (.007) (.003) (.005) (.007) .(.003) (.003)
E(u|m) 792 16.35 19.86 22.21 25.53 34.60| 9.71 18.29 19.88 22.75 23.00 32.84
(.100) (.083) (.046) (.038) (.071) (.094)| (.002) (.129) (.009) (.015) (.133) (.039)
E(a'2|w) 0.70 1.19 140 3.17 194 1.87| 0.57 2.15 0.79 2.63 2.10 2.05
(.017) (.034) (.133) (.219) (.068) (.087)| (.009) (.101) (.028) (.055) (.115) (.125)
E(p|r1:) .081 .104 286 .307 .179 .043 | .090 .064 335 387 077 .047
(.000) (.004) (.004) (.004) (.005) (.000)|(.000) (.003) (.003) .(.005) (.003) (.000)

Table 1: Ergodic averages and their standard errors for the datasets modelled with univariate normal

mixtures. Up: mixture (6). Middle: mixture (7). Down: Galaxy dataset.

mean. This clearly leads to underestimation of the smallest and overestimation of the largest
mean. Furthermore, in the case where the value generated from the prior lies in the interval
(—20,20), the empty component will be often relabelled as the one corresponding to the middle
mean resulting in its underestimation as well. On the contrary, the ECR algorithm explicitly takes
care of the above situation. As we can see in Figure 2(b), the resulting reordering succesfully solves
the label switching problem by taking into account the minor mode corresponding to the existence
of an empty component. Moreover, this produces a better fit since the first two components have
their means in the high posterior probability area. The generated values from the prior are always
assigned to the third label and so, the extreme values counterbalance each other.

In the case of mixture (7) the large sample size leaves no room for empty components to appear;
here, the relative frequency of empty components was only 1.5% and so, the values generated from

the prior did not affect much the estimates as in the previous example. Therefore, one would expect
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the two algorithms to perform similarly. However, this is not the case as we are facing another
occasion of genuine multimodality. The reorderings of the means arising by the two algorithms
are illustrated in the middle row of Figure 2.

Look first at the means reordering produced by the ECR algorithm. We can see that there are
four “stable” components and one with its values gathered in two regions: one around 19, which
is the true value of the second component’s mean, and one in a seemingly nonsense area in the
interval (30,33). This happens because for many iterations the sampler combined the first two
components to one and, instead of creating one empty component, it split the fifth component
into two having similar means and different variances. So, we can conclude that there are two
competing models with five components that fit well to the data: one with the two first and
another with the two last components having nearby (or possibly equal) means. On the other
hand, the standard Pivotal Reordering algorithm treats the simulated output as before, and so,
the relabelling results in a reordered output that does not highlight the two isolated modes of the

posterior distribution at all.

4.3 Galaxy dataset

In this section we demonstrate the performance of our method on the well-known galaxy dataset.
The data consist of n = 82 galaxy velocities (in 10 Km/Sec) diverging from our own, sampled from
the conic sections of Corona Borealis. According to Richardson and Green (1997) who fit a mixture
of normal distributions, the most probable number of components equals six. Considering the same
number of components, we ran the standard random beta model for 60000 iterations (after 10000
iterations for burn-in) and then reordered the output via the ECR and the Pivotal Reordering
algorithms. The results for the components means as well as the data histogram together with the
corresponding plug-in densities are illustrated in the last row of Figure 2. Moreover, the resulting
posterior mean estimates are presented in the last row of Table 1. Notice that, similarly to the first
example of the previous subsection, the Pivotal Reordering algorithm results in underestimation
and overestimation of the smallest and largest mean, respectively. This is a consequence of the fact
that the posterior probability of the existence of at least one empty component is considerably
large (over 30%). Note that our estimates for the components’ means are in agreement with

those reported by Jasra et al. (2005), E(Mm) = (9.71,19.01, 19.88, 22.71, 22.86, 32.92), obtained
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Figure 3: Galaxy dataset: Reordered output for the component means after applying the ECR algorithm

for a three t4 component model.

via the KL divergence based relabelling algorithm of Stephens (1997a, 2000). We have also run
Stephens’ algorithm for comparison purposes and we found that all parameters’ estimates indeed
agree. Of course, in this example the truth is unknown but the fact that the two methods give
essentially the same answers is clearly favourable for the ECR algorithm since its computational
cost is considerably smaller. More specifically, in 20 independent runs of both algorithms the
corresponding average CPU times needed for the relabelling part were 1.56 and 256.68 seconds,
respectively.

Next, we consider the approach of Stephens (1997a) who modelled the data as a mixture of
t4 distributions and compare our relabelling method with that recently presented by Griin and
Leisch (2009). Following them, we fix the number of components to k& = 3 and ran Stephens’
algorithm. The reordered values of component means are plotted in Figure 3. Observe first that
the label switching problem is succesfully solved as the reordered simulated values of the means
clearly occupy distinct areas. Secondly, the genuine multimodality of the posterior distribution
(referred also by Stephens, 1997a, and Griin and Leisch, 2009) is revealed and the high posterior
probability areas of the means corresponding to the two modes are succesfully identified. More
specifically, we see that the first component mean takes values in a stable region around 9.7 while
the other two components switch between 19.8 and 32.8 (second component) and 21.3 and 22.6
(third component). These results are in agreement with those produced by Griin and Leisch
(2009).

Griin and Leisch (2009) included a clustering procedure in their algorithm in order to identify
the genuine modes of the posterior distribution. We did the same to the reordered output produced
by our approach for comparison purposes. More specifically, we applied a K-means clustering
algorithm (considering two clusters) to the reordered values of (p, u, %) and obtained the results
displayed in Table 2. Combining these results with the reordered output in Figure 3, it is obvious

that the two genuine posterior modes differ with respect to the second and third components.
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Cluster | Weight | M2 M3 o} o3 o3 D1 D2 D3
1 .831 9.69 19.77  22.56 0.47 0.60 4.05 .093 319 .88
(053) | (.002) (.035) (.009) | (.010) (.029) (.016) | (.001) (.002) (.002)
2 .169 9.70 33.06 21.28 0.78 2.14 3.53 .093 .045 .862
(053) | (003) (.107) (.004) | (.027) (.148) (.019) | (.000) (.000) (.000)

Table 2: Galaxy dataset: Cluster weights and centroids of the reordered MCMC output after applying
the ECR algorithm for a three t4 component model.

Finally, we mention the absolute agreement of the estimated weights of the two clusters with

those reported by Griin and Leisch.

4.4 Multivariate normal mixtures

In order to check the perfomance of the proposed method in multivariate settings, we applied
the ECR algorithm to MCMC samples generated from the generalization of the random beta
model given by Dellaportas and Papageorgiou (2005) considering the number of components to be
known. For this purpose, two datasets of bivariate normal mixtures are considered. The first one is
a simulated dataset of 200 observations from the distribution 2;1 piNa(p;, X5) with actual values
shown in Table 3. Notice that this is a challenging case since there are overlapping components.
The second one is the version of the Old Faithful dataset analyzed by Stephens (1997a) as well
as by Dellaportas and Papageorgiou (2005). The data consist of 272 bivariate observations: the
duration of the eruption and the waiting time before the next eruption. According to Dellaportas
and Papageorgiou (2005) the most probable number of components equals three.

The scatterplots of the two datasets are shown in Figure 4(c). In the same graph the corre-
sponding plug-in density estimates arising after applying the ECR algorithm to MCMC outputs
of size 10000 and 30000, respectively, (after burn-in) are also plotted. Moreover, the reordered
values of the component means are shown in Figures 4(a) and (b). As we can see, the samples
have been succesfully reordered. The corresponding estimates of the posterior means are in Tables
3 and 4.

For the simulated data the posterior means estimates as produced by the ECR algorithm are
quite close to the true values; see Table 3. It is important to note that a constraint on the means

would fail to isolate the mode of the posterior as can be concluded from the first row of Figure
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parameter | true value KL ECR standard errors
p (.25,.25,.25,.25) (.30,.21,.24,.25) (.30,.21,.24,.25) (4,3,4,4) x 10~*
(4.5,-2.5) (4.43,—2.36) (4.43,—2.36) (.0014, .0015)
(—3.0,4.0) (—2.91,4.04) (—2.91,4.04) (.0022,.0012)
# (6.5,7.0) (6.73,7.34) (6.73,7.34) (.0028,.0036)
(7.0,-3.0) (6.99,—2.77) (6.99, —2.77) (.0036, .0065)
0.5 —0.25 0.54 —0.20 0.54 —0.20 .0022 .0013
(0.25 0.5 ) (0.20 0.81 ) <0.20 0.81 ) (.0013 .0027)
0.5 —0.25 174 —-0.77 174 —-0.77 .0045 .0026
5 (0.25 0.5 ) (0.77 0.69 ) <0.77 0.69 ) (.0026 .0018)
4 25 3.30 2.14 3.30 2.14 0071 .0072
(2.5 4 ) (2.14 4.09) <2.14 4.09 (.0072 .0106)
4 25 3.55  2.27 3.55  2.27 .0097 .0119
(2.5 9 ) (2.27 10.13) <2.27 10.13) (.0119 .0384)

Table 3: Posterior means estimates of the parameters for the simulated multivariate dataset according

to Stephens’ KL algorithm and the ECR algorithm (10000 iterations following a burn-in of 1000).

4(a,b). This is also the case for the variances and covariances (not shown here). Moreover, the high
posterior probability area of the weights is close to the area at which they are all equal and thus
the components could not be well separated by imposing a constraint on them either. In Table
3 we see that the results completely agree with those obtained by applying the KL relabelling
algorithm of Stephens. However, the average CPU time needed by the ECR algorithm for the
relabelling part was once more considerably smaller compared to the KL algorithm (0.45 versus
16.31 seconds in 20 independent runs, respectively).

For the Old Faithful dataset the estimates agree with those reported by Dellaportas and Pa-
pageorgiou (2005) (see Table 4) who reordered the output by imposing a constraint on the first
coordinate of the means. This happens because the simulated values of this coordinate are well

separated (see Figure 4). Nevertheless, such artificial IC can be proven quite inefficient in general

settings, as discussed previously.

5 Discussion

A simple yet efficient method to solve the label switching problem has been presented. The method
uses effectively the natural partition of the allocation space into equivalence classes. Every possible

set of the classes representatives Z; gives rise to a non-symmetric distribution fz,, see (3), that
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(a) (b) (c)
Figure 4: Reordered MCMC outputs of (a) p1; and (b) pg;, j =1,...,k, based on ECR algorithm and

(c) scatterplot of the bivariate data along with the corresponding plug-in density estimate. Up: Simulated

dataset from the mixture in Table 3 (k = 4). Down: Old Faithful data (k = 3).

can reproduce the posterior distribution. In practice, Z; is formed by first selecting a pivotal
allocation vector z* and then minimizing the simple matching distance of each equivalence class
from it. In the case where the pivot corresponds to a high probability area of f(z,p,8|x), the
magnitude of the symmetric modes has totally vanished.

In principle, the determination of Zy by the MCMC output itself, seems to be annoying; recall
that the convergence stated in Proposition 3.1 occurs for fixed Z,. Of course, Z; could be chosen
based on a preliminary run, similarly to what Frithwirth-Schnatter (2001) does in order to select a
constraint on the parameter space. But since our approach is based on post-processing the MCMC
output, it is clear that reordering a second MCMC sample (according to the selected Zy) would
not make any difference at all.

The proposed reordering method has many desirable properties. First of all, it does not depend
on the dimensionality of the parameter space. Secondly, it requires small computational effort
compared to other more sophisticated solutions. Third, the distribution of the reordered sample
has exactly the same support as the original posterior distribution. This is a very important
feature, since it can help to reveal all genuine modes (if any) and does not lead to any serious
under— or overestimations of the parameters. Fourth, for all examples we tried, we got essentially
the same answers as those reported by the developers of any other “good” approach. Although

this can not serve as a formal argument, it is an encouraging fact for the use of the ECR algorithm
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parameter D&P ECR standard error

p (.572,.340,.087) | (.590,.351,.059) (.0052,.0004,.0052)
(4.34,80.34) (4.33,80.33) (.0019,.0129)
m (2.02, 54.48) (2.04,54.63) (.0006,.0080)
(3.44,70.19) (3.53,71.33) (.0198,.3182)
. <0.14 o.47> <0.15 O.63> (.0010 .oo73>
0.47 32.86 0.63 32.46 0073 1368

0.06 0.32 0.09 0.66 .0003 .0023
<0.32 34.58) (0.66 38.55) (.0023 .0488)
0.29 3.32 0.30 1.75 .0820 .7422
<3.32 85.98) (1.75 82.07) (.7422 16.66)

Table 4: Old Faithful dataset: Posterior means estimates reported by Dellaportas and Papageorgiou

(2005) and based on the ECR algorithm together with their estimated standard errors (30000 iterations
following a burn-in of 20000).

since it is by far more simple and less computationally demanding than these approaches.

In all of the examples presented in this paper the number of components k is considered known.
However, this does not limit the applicability of the proposed method. Recall that in the case of
unknown k& where transdimensional MCMC algorithms are used (e.g. the reversible jump MCMC
of Richardson and Green, 1997), estimates of the parameters are obtained conditional on the
number of components, i.e., one set of estimates for each value of k. Similarly, the ECR algorithm
must be applied separately to each subset of the output that corresponds to the same k.

In many cases, the original algorithm does not use data augmentation in the first place. For
instance, this holds for the Metropolis—Hastings algorithm. However, it is always valid to simu-
late the allocations after having obtained the (p,8)®, i = 1,..., M, output. Generation of z(
conditional on (p,0)® (and x) under model (1) is straightforward and the augmented sample
(2,p,0)9, i = 1,..., M, targets f(z,p,0|x) as required. Afterwards, the ECR algorithm can
be applied to the augmented sample as before. Simulations (not reported here) have shown that
everything works as in the previous examples.

It is evident that the ECR algorithm has many common characteristics with previous ap-
proaches to the label switching problem. The restriction of the allocation space to Z; can be
considered analogous to the ICs imposed to the parameter space, see Subsection 2.1. The deter-
mination of Z; based on a pivot is a modification of the Pivotal Reordering algorithm of Marin et

al. (2005). Finally, the fact that the algorithm is applied to the allocation space could be consid-
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ered as a slight resemblance to Stephens’ (2000) KL based approach. The basic difference is that
Stephens deals with the similarity of the allocations’ estimated posterior distribution rather than
the observed allocations themselves. However, the previous approaches are either inefficient or
computationally unappealing in practice. For instance, ICs and the default version of the Pivotal
Reordering algorithm work well only in cases where the mixture components are far apart. On the
other hand, the relabelling algorithms via loss functions and the KL based algorithm of Stephens
(2000) are quite elaborate methods, but the high computational cost limits their applicability.
Therefore, we strongly suggest ECR algorithm for the solution of the label switching problem
since it is both efficient and easy to be applied.
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SUPPLEMENTAL MATERIALS

Appendix and Rweave code: The supplemental materials include (a) an appendix with the
proofs of Lemma 3.1 and Proposition 3.1 as well as some other technical results and (b) the
file ecr_urb.Rnw which contains an Rweave code that can be used to replicate the analysis
for the simulated datasets from the mixtures in Section 4.2 and for the galaxy dataset as

well as its companion file Readme . pdf.
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Appendix to

“An artificial allocations based solution to the label switching
problem in Bayesian analysis of mixtures of distributions”

published in the Journal of Computational and Graphical Statistics

Panagiotis Papastamoulis and George Iliopoulos!

Lemma A.1. The posterior distribution of (z,p,0) satisfies
f(rz,p,0|x) = f(z,7(p,0)|x), V7T €eT. (A.1)
Moreover, for the conditional distribution of (p,0) given (x,z) it holds
f(p,Blx,72) = f(1(p,0)|x,2), V71 €T (A.2)

Proof. Let I ={1,...,n}. For any z € Z write [ = I;(z)U---UIx(z) with [;(z) =
{i : z; = j} and let n;(z) = card(I;(2)) = > i I(z = j), j = 1,..., k. Also,
let g(p, 0|z, z) = Hle Hielj(z)f(xi\ej)p?j(z). Then, we can write f(z,p,0|x) =
F(|2. p, 0)f (2Ip)f (1, 0)/ () = g(p,Olx, 2)(p,0)/ (). Hence, for every 7 € Ty
we have that

f(rz,p,0lx) = g(p, 0|z, 2) f(p,0)/ f (x). (A.3)

Let 77! = (¢},...,1,) be the reverse permutation of 7 = (¢4, ..

Li(tz) ={i:t.,, = j} ={i: z =t} = Iy (2). Hence,

., 1r). Observe that

k

n;(rz) nt/(z)
9.0z, 7z)= [ T flilo,)p;" H [T fzlo)p
j= 1@6]7(7-z) j= 1Z€It/()
k J
= I II r@ilo)e™ = g(r(p.0)|z. 2). (A.4)
j=li€l;(z2)

!Corresponding author. Department of Statistics and Insurance Science, University of Piraeus,
80 Karaoli & Dimitriou str., 18534 Piraeus, Greece e-mail: geh@unipi.gr



Now, notice that the prior distribution is invariant with respect to the labelling,
that is, f(p,0) = f(7(p,0)), V7 € T;.. Substituting this together with (A.4) into
(A.3) we get f(rz,p,0|x) = f(z,7(p,0)|x) and the proof of (A.1) is completed.
Finally, (A.2) follows immediately from (A.1) and the fact that f(z,p,0|x) =
w(z|x) f(p,0|x, z) and w(z|x) is invariant with respect to the permutations of the

labels. O

Proof of Lemma 3.1. After rearranging the k™ terms, (2) can be written as

f(p,0lz) = Z Z f(p, 0|z, z). (A.5)

zE€Zy z* €2,

But

S w(E o) i ol z) = S —AEE i, bl 2

z*€=, 7Ty (k kO(TZ))
w(z|®
W Z f(p,Olx,72). (A.6)
TET;
Substituting (A.2) and (A.6) into (A.5) we get
[ 0lz)= > — ( ,Zf (p,0)|z, 2)
zE€Z T€T}
z\zc
= k' Z Z (T( |a’. Z ]{7' Z on pa |£13
TeT; zeZo €Ty
as stated, and this completes the proof. O

Lemma A.2. Let (z,p,0) ~ f(z,p,0|x) and, conditional on (z,p,0), T has the
uniform distribution on T, defined in Section 3. Then, 7~ (p,0) ~ fz,(p,0|x).

Proof. Observe first that 7 depends solely on z and there are exactly (k — ko(2))!
permutations that switch z to Zy. Thus, the joint pdf of 7, 2z, p, 0 is

w(zlz)

f(r,z.p,0lz) = f(p,0lz, 2) f(z|z)f(7|2) = = R

f(p,Blx,2)I(T € T,).
(A.7)



Let (7%, 2%, p*,0") = (1,72,7 '(p,0)). Then, for any 7 € T;,,u € Z; and measur-
able subset C' of the space A (say) of (p, 8) we have

P(r't,z* = u, (p*,0") € Olx) =P(r =t,7z2 =u,7 '(p,0) € Olx) =

w(t” ulz) /fp,0|:1:t Lu)dpd#,

(k — ko(t )

P(r=t,z=1"u,(p,0) € 7C|x) =

since t € Ty-1,, for all t € Ty and u € Zy. But w(t 'u|z) = w(u|z) and ko(t~'u) =

ko(u), so, using also (A.2), the last expression becomes

u|m u|:1:

—_— Olz,t 'u)dpdd = —— 0 dpdé.
Hence, the density of (7%, z*, p*, 0*) (with respect to the appropriate product mea-
sure) is

. w(ulx)
f*(t,u,p,0|x) = f(p,0lxz,u), teThucZ,(p,0)cA (A8

(k= ko(u))!

while the marginal distribution of p*,0* = 77!(p, 0) is

Foa) =3 Y s bl = K e w)

= 2k~ ko(w))!

i.e., fz,(p,0|x) as stated. O

Proof of Proposition 3.1. Clearly, the augmented sequence (7;, 2%, (p,8)?) is a
Markov chain with limit distribution f(7, z,p, 8|z) in (A.7). Now, (7%, z*, p*, 8*)®
is an invertible transformation of (7;, 2, (p,8)®), so the corresponding sequence
is a Markov chain as well with limit distribution f*(7*, z*,p*, 0*|x) in (A.8). The

result follows again after marginalization. O



