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Abstract

The Label Switching is a well-known problem occuring in MCMC outputs in Bayesian
mixture modelling. In this paper we propose a formal solution to this problem by considering
the space of the artificial allocation variables. We show that there exist certain subsets of the
allocation space leading to a class of nonsymmetric distributions that have the same support
with the symmetric posterior distribution and can reproduce it by simply permutating the
labels. Moreover, we select one of these distributions as a solution to the label switching
problem using the simple matching distance between the artificial allocation variables. The
proposed algorithm can be used in any mixture model and its computational cost depends on
the length of the simulated chain but not on the parameter space dimension. Real and simu-
lated data examples are provided in both univariate and multivariate settings. Supplemental
material for this article is available online.
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1 Introduction

Assume that the observed data x = (x1, . . . , xn) is the realization of a random sample from a

finite mixture of distributions,

Xi ∼ f(x|p, θ) =

k∑

j=1

pjf(x; θj), i = 1, . . . , n, (1)
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where the weights p = (p1, . . . , pk) are positive and sum to one and θ = (θ1, . . . , θk) are the

component specific parameters and may be either univariate or multivariate quantities such as

vectors or matrices. Throughout this paper, the number of components k is assumed to be

known. In many cases, it is convenient to assume that each observation xi has arised from

one of the k components, say component zi ∈ {1, . . . k}. Then, z1, . . . , zn can be considered as

realizations of corresponding independent and identically distributed random variables Z1, . . . , Zn

with probability mass function P (Zi = j|p) = pj , j = 1, . . . , k, for i = 1, . . . , n. This means that,

conditional on Zi = j, Xi is distributed according to the jth mixture component, f(x; θj). Notice

that z1, . . . , zn are unobserved (otherwise (1) would be no longer a mixture of distributions) and

so they need to be treated as missing data.

The EM algorithm is a standard frequentist method for estimation in missing data models

and is guaranteed to converge to a local maximum of the likelihood. On the other hand, in

a Bayesian setting, the Gibbs sampler can be used in order to simulate a Markov chain with

the posterior as limit distribution. In the case of mixtures, both approaches fully exploit the

missing data structure described above; at each step, the EM algorithm maximizes the complete

likelihood function conditional on the expected values of the latent variables while the Gibbs

sampler simulates the values of Z1, . . . , Zn from their full conditional posterior distributions.

An important feature of a mixture model is that the likelihood is invariant under permutations

of the components’ indices. In a Bayesian setup, if the prior information for the parameters (pj, θj)

is the same for all component labels j = 1, . . . , k, then the same holds for the posterior distribution

as well. In such cases it turns out that the parameters are not identifiable. When MCMC methods

are used for simulation from the posterior distribution, this nonidentifiability leads to the so-called

label switching phenomenon, the presence of which has both pros and cons. While it serves as

a necessary condition for the convergence of the MCMC algorithms, at the same time renders

the parameter estimation procedure non-trivial. In the literature many approaches have been

proposed to deal with this phenomenon varying from simple artificial identifiability constraints

(Diebolt and Robert, 1994, Richardson and Green, 1997, Frühwirth-Schnatter, 2001) to more

sophisticated algorithms based on the Kullback-Leibler divergence (Stephens, 1997a, 2000) or on

label invariant loss functions (Celeux et al., 2000) yet none of them is both simple and efficient.

In what follows, we propose a simple method that operates on the space of the latent variables
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z1, . . . , zn and succesfully solves the label switching problem. It has many advantages compared

to previous approaches; in particular, it requires small amount of computational effort and is not

affected by the dimensionality of the parameter space. Moreover, in the case where the posterior

distribution exhibits genuine multimodality, the succesful solution of the label switching problem

allows to efficiently post-processing the reordered output by some standard clustering algorithm

(e.g. the K-means clustering algorithm) in order to reveal all minor modes provided that they

have been explored by the original sampler. Another advantage of the succesful solution is that it

leads to better estimates for the parameters that can be used directly in order to obtain a good

plug-in density estimate of the posterior distribution.

The rest of the paper is organized as follows. In Section 2, previous approaches for solving the

label switching phenomenon are briefly described. The Equivalence Classes Representatives (ECR)

algorithm is introduced in Section 3. The approach is justified by providing a rather new expression

of the posterior distribution as an equally weighted mixture, and showing that the algorithm

produces a sequence that converges to one of this mixture’s components. Furthermore, by using

ideas from the Pivotal Reordering algorithm of Marin et al. (2005), a practical implementation

of ECR algorithm is suggested. In Section 4, the perfomance of the method is compared with

that of previous ones in both univariate and multivariate settings. The paper concludes in Section

5 with a discussion. An appendix containing proofs and useful lemmas can be found online as

supplemental material.

2 Label switching phenomenon and previous solutions

Let Tk be the set of permutations of the component indices {1, . . . , k}. For some τ = (t1, . . . , tk) ∈

Tk consider the corresponding permutation of the parameter vector τ(p, θ) = (pt1 , . . . , ptk , θt1 , . . . , θtk).

The root of the label switching phenomenon is the fact that the likelihood L(p, θ|x) =
∏n

i=1{p1f(xi; θ1)+

. . . + pkf(xi; θk)} is invariant with respect to the permutations of the component labels as it is

obvious that L(p, θ|x) = L(τ(p, θ)|x), ∀τ ∈ Tk (see Stephens, 2000).

In a Bayesian analysis, if the prior distribution does not distinguish the component parameters

between each other (which is the most common case), then the resulting posterior distribution

will be invariant in the permutations of the labels, since it will be proportional to the product of a

symmetric likelihood with a symmetric prior distribution. In other words, the parameters are not
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marginally identifiable as their marginal distributions are exactly the same. Hence, if a sample is

simulated from the posterior distribution, the standard method of ergodic averages for estimating

the weights and the component specific parameters will lead to nonsensible estimates as they will

be the same for every mixture component.

It is desirable for MCMC algorithms to properly explore the posterior distribution, and what

we can at least demand is the presence of the label switching phenomenon. However, it is well-

known that the Gibbs sampler rarely switches between the symmetric modes. In situations where

no label switching occurs, proper label switching moves can be incorporated to guarantee the

presence of the phenomenon (see Papaspiliopoulos and Roberts, 2008). On the other hand at

the same time we need a simple method to “undo” the label switching in order to derive proper

estimates and this can be done by applying suitable permutations to the simulated values. It turns

out that this is equivalent to choosing one of the symmetric modes and switching all simulated

values to this particular one.

Below, we briefly review some known approaches which attempt to solve the label switching

problem.

2.1 Artificial Identifiability Constraints

An identifiability constraint (IC) is a condition on the parameter space of (p, θ) which is satisfied

by only one permutation of the parameters. ICs were used, among others, by Diebolt and Robert

(1994) and Richardson and Green (1997). They have come under strong criticism in the literature

(see for example Celeux, 1997, Celeux et al., 2000, and Stephens, 1997a, 1997b, 2000). One

problem with this approach is the choice of the constraint. A more general difficulty of using ICs

occurs in multivariate problems. Moreover there are situations where the posterior distribution

is genuinely multimodal and no IC can isolate both its main and minor modes succesfully (see

e.g. Grün and Leisch, 2009, Section 6.1).

An alternative approach was provided by Frühwirth-Schnatter (2001) who used a random

permutation sampler (RPS) in order to ensure that all k! symmetric modes have been visited.

Frühwirth-Schnatter then applied exploratory data analysis on a preliminary MCMC run from

the RPS in order to find suitable identifiability constraints that separate the components between

them. Afterwards, a constrained permutation sampler is used to produce a sample from the
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constrained posterior distribution, that is, the posterior distribution constrained to the subset of

the parameter space that satisfies the artificial IC chosen on the previous step. Nevertheless, the

previous drawbacks are present in this case as well.

2.2 Pivotal Reordering Algorithm

A simple method to undo the label switching without imposing an identifiability constraint is the

Pivotal Reordering algorithm introduced by Marin et al. (2005) (see also Marin and Robert, 2007).

The Monte Carlo approximation of the Maximum A Posteriori (MAP) estimate, i.e., the simulated

value that maximizes the posterior distribution, is used as a pivot to reorder all simulated points

by simply minimizing a certain distance in the parameter space. In the case of euclidean distance,

this task is equivalent to the maximization of the canonical scalar product. The approach works

well in simple cases, but in cases of genuine multimodality it has some drawbacks due to the

inability of the MAP estimate to accomodate competing explanations of the data (cf. Jasra et al.,

2005). This is illustrated via some examples in Section 4.

2.3 Kullback–Leibler divergence based algorithms

Stephens (1997a, 2000) developed an algorithm that makes the permuted sample points to agree as

much as possible on the n×k matrix of classification probabilities πij = pjf(xi|θj)/
∑k

l=1 plf(xi|θl).

Stephens measures the distance between two matrices of classification probabilities Π = (πij) and

Q = (qij) using the Kullback–Leibler (KL) divergence D(Π||Q) =
∑n

i=1

∑k

j=1 πij log
πij

qij
. Based on

a simulated output of length M , the algorithm finds suitable permutations τt, t = 1, . . . , M , and a

matrix of classification probabilitites Π̂ in order to minimize D =
∑M

t=1 D(τtΠ
(t)||Π̂). As Stephens

notes, this algorithm may be computationally quite demanding in memory. Recently, Grün and

Leisch (2009) proposed a relabelling and clustering approach extending the algorithm of Stephens

to cases where genuine multimodality takes place. More specifically, they introduced a method

where the mode allocations and the relabelling of components are silmutaneously determined.
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2.4 Label Invariant Loss Functions

A fully decision theoretic approach has been introduced by Celeux et al. (2000) and applied also

by Hurn et al. (2003). The method proceeds by defining a loss function that is invariant to the

labelling and then minimizing the posterior expected loss. Typically, the minimization step cannot

be performed analytically, and so stochastic implementation methods (e.g., simulated annealing)

should be implemented.

From a Bayesian point of view, this method is more satisfactory than the previous ones since

inference is drawn conditional solely on the data. On the other hand, its main drawback is the

high computational cost. A second drawback is the fact that the minimization of the posterior

expected risk may not be always feasible restricting possibly the applicability of the method to a

class of loss functions that may not make sense for the decision problem at hand (see Jasra, et al.,

2005).

The overall message is that there is no solution to the label switching problem that is both

simple and efficient to be applied in general settings. Therefore, a method that succesfully solves

the problem and requires little computational effort is needed.

3 The Equivalence Classes Representatives Algorithm

In this section we describe a simple yet efficient method for solving the label switching problem.

In order to justify it, a deeper insight to the posterior distribution will be useful.

3.1 A mixture representation of the posterior distribution

Note that the posterior distribution of (p, θ) can be expressed as

f(p, θ|x) =
∑

z∈Z

w(z|x)f(p, θ|x, z) (2)

where w(z|x) denotes the posterior weight of the allocation vector z, and f(p, θ|x, z) denotes the

posterior distribution of (p, θ) given (x, z) (see Marin et al., 2005). In what follows, everything is

based on permutations of the allocations. So, in order to be strict we give the following definition.
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Definition 3.1 Let τ = (t1, . . . , tk) ∈ Tk, be a permutation of the index set. The corresponding

relabelling τz of the allocation vector z = (z1, . . . , zn) ∈ Z := {1, . . . , k}n is given by τz =

(tz1 , . . . , tzn
) ∈ Z.

Note that when the components are not labelled, it holds w(τz|x) = w(z|x) for all τ ∈ Tk

and z ∈ Z, and this results in a posterior distribution that is symmetric with respect to the

permutations of the labels. It is easy to see that Definition 3.1 implies an equivalence relation on

the allocation space Z.

Definition 3.2 Two allocation vectors z1, z2 ∈ Z will be said to be equivalent if there exists

τ ∈ Tk such that z1 = τz2.

Let Ξz = {τz : τ ∈ Tk} denote the equivalence class of z ∈ Z. It is easy to see that Ξz

contains k!/(k−k0(z))! elements, where k0(z) denotes the number of nonempty components for a

given allocation vector z. Note that using an inclusion–exclusion argument, it can be concluded

that the total number of classes (for given k and n) equals
∑k

i=1(i
n/i!)

∑k−i

j=0(−1)j/j!. Consider

now an arbitrary set Z0, consisting of exactly one representative from each equivalence class and

let

fZ0(p, θ|x) :=
∑

z∈Z0

k! w(z|x)

(k − k0(z))!
f(p, θ|x, z). (3)

It is easy to verify that the weights k! w(z|x)/(k − k0(z))! sum to one when z ∈ Z0. Therefore,

fZ0(p, θ|x) is a probability density function with the same support as f(p, θ|x), since it is a

mixture of the distributions f(p, θ|x, z), for z ∈ Z0. Notice here that it differs from the conditional

posterior distribution of (p, θ) given z ∈ Z0. Observe also that fZ0 is nonsymmetric for any choice

of Z0. Moreover, it holds the following.

Lemma 3.1 The posterior distribution of (p, θ) can be expressed as

f(p, θ|x) =
1

k!

∑

τ∈Tk

fZ0 (τ(p, θ)|x) (4)

for any choice of the equivalence classes representatives Z0.

Lemma 3.1 shows that the posterior distribution of (p, θ) can be written as an equally weighted

mixture of nonsymmetric distributions. This representation has a fruitful interpretation in terms of
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the label switching phenomenon. First, we conclude that a sample from the distribution fZ0(p, θ|x)

is sufficient to produce a sample from the posterior distribution f(p, θ|x) and this can be done

simply by permuting the labels of the simulated values, as expression (4) shows. More important

is the reverse direction. Assume for convenience that the sampler uses data augmentation. (This

is actually not a restriction since in the opposite case the output can be afterwards augmented as

described in Section 5.) If we have obtained a sample from the symmetric posterior distribution,

we are able to produce a sample from fZ0(p, θ|x) according to the following scheme: Suppose that

at the ith iteration of the original sampler we simulate (z(i), (p, θ)(i)) with z(i) ∈ Z. Let τi ∈ Tk be

such that τiz
(i) ∈ Z0. Obviously, it holds z(i) = τ−1

i τiz
(i). Then, by Lemma A.1 in the Appendix

we get

f(z(i), (p, θ)(i)|x) = f(τiz
(i), τ−1

i (p, θ)|x). (5)

The last expression is the key in order to obtain a sample from fZ0(p, θ|x) while we have an

(augmented) sample from the posterior distribution of (z, p, θ), as shown in Lemma A.2 in the

Appendix. Moreover, by setting Tz := {τ ∈ Tk : τz ∈ Z0} for any z ∈ Z, we have the following

convergence result.

Proposition 3.1 Let (z(i), (p, θ)(i)), i = 1, 2, . . . be a Markov chain with limit distribution f(z, p, θ|x).

For all i let τi be uniformly distributed on T
z

(i). Then the limit distribution of the sequence

τ−1
i (p, θ)(i) is fZ0(p, θ|x).

By the construction of the set Z0, fZ0 is not symmetric and can produce a sample from

the uncostrained posterior distribution taking into account all permutations of the component

indices. Hence, fZ0 can be used in order to solve the label switching phenomenon. Moreover, this

distribution has the same support as the (original) posterior distribution. (This is not the case

for the constrained posterior distributions obtained when we adopt the permutation sampler of

Frühwirth-Schnatter, 2001, or the Pivotal Reordering algorithm of Marin et al., 2005.) With that

in mind, our method for solving the label switching problem proceeds as follows.
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The Equivalence Classes Representatives (ECR) Algorithm

1. Determine Z0 and obtain a simulated output (z, p, θ)(i), i = 1, . . . , M , with target

distribution f(z, p, θ|x).

2. For i = 1, . . . , M :

(a) Select randomly some permutation τi ∈ T
z

(i).

(b) Set (z′, p′, θ′)(i) =
(
τiz

(i), τ−1
i (p, θ(i))

)
.

3. Use the reordered values (p′, θ′)(i), i = 1, . . . , M , in order to approximate the

posterior distributions of the weights and of the component specific parameters.

3.2 Choosing a set of representatives

In order to determine the set of representatives Z0, we must clarify aspects like the difference

between two sets of representatives, what is a “good” set of representatives, and how such a set

can be constructed.

As is apparent from (3), the distribution fZ0 of the reordered sample of (p, θ) is a mixture of

the conditional distributions f(p, θ|x, z), z ∈ Z0. Recall that the weights of this mixture are not

affected by the selection of the representative, since w(τz|x)/(k−k0(τz))! is constant with respect

to τ ∈ Tk. Hence, two different sets of representatives Z0 and Z ′
0 yield two distributions fZ0 and fZ′

0

that differ only with respect to their components f(p, θ|x, z), z ∈ Z0, and f(p, θ|x, z), z ∈ Z ′
0.

Observe also that if Z0 6= τZ ′
0 for all τ ∈ Tk, then fZ0 and fZ′

0
typically have completely different

shapes and the first can not be reproduced from the second by applying simply a permutation to

(p, θ).

An efficient solution to the label switching problem must not just break the symmetry of the

posterior distribution but further eliminate as much as possible the influence of all but one of

its symmetric copies. Now, while for any Z0 the distribution fZ0 is nonsymmetric, an arbitrary

selection of the equivalence classes representatives would retain a significant portion of some

symmetric copies’ magnitude. In order to avoid that, the representatives must be selected in such

a way so that all components of fZ0 have their masses concentrated as much as possible to one

of the k! symmetric high posterior density areas. Clearly, the areas at which the components

concentrate their masses depend on the corresponding allocation vectors z. Moreover, “similar”
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z’s will give rise to components which are close to each other. A natural measure of the similarity

of two allocation vectors is the number of their matching allocations:

Definition 3.3 The S similarity measure of two allocation vectors z1 = (z11, . . . , z1n) and z2 =

(z21, . . . , z2n) is defined by S(z1, z2) :=
∑n

i=1 I(z1i = z2i), where I(A) is the indicator function of

A.

Obviously, it holds 0 ≤ S(z1, z2) ≤ n. Moreover, notice that n−S(z1, z2) is the simple matching

distance between z1 and z2. Note that although more sophisticated measures could be used, S

similarity is perfect for our purposes.

Intuition probably suggests that, in constructing Z0, all representatives (and, by analogy, the

components of fZ0) should be chosen to be as much similar as possible to each other. However,

we are interested in switching everything to a particular high posterior density area rather than in

the overall components’ similarity. This can be done by simply selecting an appropriate z∗ ∈ Z,

include it to Z0, and choosing as representatives the allocations that are most similar to it.

Under this point of view, the determination of Z0 reduces to finding a “good” allocation vector

z∗ which will act as a pivot for the rest classes’ representatives and so, the ECR algorithm can be

seen as a modification of the Pivotal Reordering algorithm of Marin et al. (2005) (see Subsection

2.2) on the set Z. More specifically, suppose that we want to select the representative τz of some

equivalence class Ξz. Define τ(Ξz) = arg maxτ∈Tk
S(τz, z∗) to be the permutation which makes

z as much similar as possible to z∗ and select τ(Ξz)z as the corresponding representative to be

included in Z0. In the case where there are more than one maximizing permutations, τ1, τ2, . . .,

order τ1z, τ2z, . . . lexicographically and choose as τ(Ξz) the permutation corresponding to the

first of them. Hence, the set of representatives is given by Z0 = ∪{τ(Ξz)z; z ∈ Z}. Notice

the difference between the set of possible τ(Ξz)’s and Tz defined in the previous subsection. The

former serves for defining the particular Z0 whilst the latter has a meaning only after Z0 has

been defined. On the other hand, the two sets are connected with Tz being a subset of the set of

possible τ(Ξz)’s.

3.3 Reordering a simulated output

It is evident that the posterior distribution f(z, p, θ|x) has multiple modes as well. Indeed, (5)

implies that if (z(MAP), (p, θ)(MAP)) ≡ (z, p, θ)(MAP) is a mode, then (τz(MAP), τ−1(p, θ)(MAP)) is
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also a mode for any permutation τ . Then, an excellent choice for the pivotal value z∗ would be

z(MAP). This is justified by (2) and the fact that only few allocations have non-negligible posterior

weight (cf. Casella et al., 2004). However, the computational effort needed for the analytical

evaluation of the modes increases rapidly with the sample size and thus it becomes prohibitive.

Let (z, p, θ)(i), i = 1, . . . , M , be a simulated output with target distribution f(z, p, θ|x).

Let also ẑ(MAP) be the allocation vector that corresponds to the Monte Carlo approximation

of the Maximum a Posteriori estimator (ẑ, p̂, θ̂)(MAP) = arg max1≤i≤M f((z, p, θ)(i)|x). Since

(ẑ, p̂, θ̂)(MAP) consistenly estimates a mode of f(z, p, θ|x), as the number of iterations M increases

S(ẑ(MAP), τz(MAP)) converges to n for some τ ∈ Tk. However, by the discreteness of the allocation

vector, the S similarity of ẑ(MAP) and τz(MAP) (for some τ ∈ Tk) will become sooner or later

equal to n. But recall that all we need in order to apply our approach is a good pivot z∗ and not

necessarily the “best” one. So, ẑ(MAP) is a satifactory choice as well.

With ẑ(MAP) as the pivot, the scenario of existing two (or more) different members of a class

maximizing the S similarity measure (and hence having to choose according to the lexicographical

order) is quite rare. In particular, this has never occured in the various examples we tried. Note

also that for any z ∈ Z it holds Tz = {τ = arg maxτ∈Tk
S(τz, ẑ(MAP))}.

Besides the MAP estimate, other valid choices for the pivot are the most probable allocation

and the allocation vector corresponding to the maximum of the complete likelihood. Moreover,

since Z0 can be any set of representatives, one can use as a pivot any allocation vector that has

been frequently visited by the MCMC algorithm, provided that n is not very small. In fact, when

we tried these different pivot choices we obtained almost identical results. Finally, we underline

that we avoid more complicated schemes for the determination of Z0 because the selection of the

pivot z∗ has not the drawbacks of the Pivotal Reordering algorithm. Since we are dealing with

the space of artificial allocation variables rather than the parameter space, we can take advantage

of its discrete nature and the small number of the allocations with non-negligible posterior weight.

The latter implies that the majority of classes have almost zero weight and thus they do not

contribute much to the posterior distribution.
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4 Examples

In this section we illustrate our approach via both univariate and multivariate datasets. The first

example shows analytically how the method transforms the posterior distribution. Afterwards,

the method is illustrated via simulated and real datasets while at the same time the results are

compared with those obtained by other approaches as the Pivotal Reordering and KL based

algorithms. In all cases the number of components is assumed to be known. Note that in all

MCMC algorithms a label switching move is added (see Papaspiliopoulos and Roberts, 2008) in

order to ensure the presence of the label switching phenomenon. Finally, the reported standard

errors have been estimated by running the same sampler 100 times independently with different

starting values. All simulations and reorderings have been performed on a Pentium IV using

Fortran 90. The optimal permutations were found using Carpaneto’s (1980) Fortran routine for

solving the assignment problem.

4.1 An exact illustration of the proposed method

We simulated x = (6, 12, 9, 4, 6) from a mixture of two Poisson distributions with known and

equal weights, 0.5P(θ1) + 0.5P(θ2), where θ = (θ1, θ2) = (5, 7). We assumed further that θ1, θ2

are a priori independent with the same prior distribution G(1.2, 0.2), that is, gamma with mean

1.2/0.2 = 6. The resulting symmetric posterior distribution of θ1, θ2|x is shown in Figure 1(a).

Using Mathematica we found its two symmetric modes at (7.75, 6.01) and (6.01, 7.75) (indicated by

arrows). In Figures 1(b) and 1(c) we have also plotted the (nonsymmetric) distributions fZ0(θ|x)

for two different choices of Z0. In the first case, the classes’ representatives have been randomly

selected whereas in the second case each representative is chosen to be as much similar as possible

to z∗ = (1, 2, 2, 1, 1) which is the allocation vector corresponding to the maximum of the f(z, θ|x).

Clearly, while in both cases the resulting distributions break the symmetry of the posterior, the

latter should be preferred since the magnitude of the symmetric mode has been totally vanished

in contrast to the former where a significant portion of the symmetric mode is retained.

In general, the apparent modes of a mixture of distributions may be far apart from the modes of

its components. Indeed, in Figure 1(c) we can see that the mode of fZ0 is at (5.35, 8.36). Moreover,

fZ0 exhibits a minor mode at (7.15, 1.00) which is not visible in the posterior distribution. Its

appearence is due to the fact that the posterior probability of an empty component is sufficiently
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Figure 1: (a) The symmetric posterior distribution of θ1, θ2|x. (b,c) The distributions fZ0(θ|x) when

the equivalence classes representatives are selected randomly and by maximizing the S similarity to

z∗ = (1, 2, 2, 1, 1), respectively. (All densities are shown up to the same multiplicative constant.)

large: straightforward calculation yields w(1, 1, 1, 1, 1|x) = w(2, 2, 2, 2, 2|x) ≈ .0394. This is

further justified by the value of the second coordinate of the minor mode which is actually the

mode of the prior. Note that when we explored the posterior distribution using the Gibbs sampler

the results produced by the ECR algorithm totally agreed with the theoretical ones. In particular,

the reordered output explores the minor mode at the correct rate; the weight assigned by a K-

means clustering algorithm to the corresponding cluster was approximately 7.97%, that is, almost

twice the weight of an empty component as expected.

4.2 ECR Algorithm versus Pivotal Reordering Algorithm

In order to illustrate the differences between the ECR algorithm and the standard Pivotal Reorder-

ing algorithm of Marin et al. (2005) we simulated data from two mixtures of normal distributions,

namely,

0.10N (−20, 1) + 0.65N (20, 3) + 0.25N (21, 0.5), (6)

0.20N (19, 5) + 0.20N (19, 1) + 0.25N (23, 1) + 0.20N (29, 0.5) + 0.15N (33, 2). (7)

From (6) we simulated n = 160 observations while from (7) we simulated n = 600 observations. In

both cases we used the random beta model of Richardson and Green (1997) but with the number

of components fixed at their true values. Afterwards, the simulated samples (after burn-in) were

reordered according to both the Pivotal Reordering and ECR algorithms. In the first two rows of

Figure 2 we plot the reordered raw values of the means for the two methods as well as the data

histograms together with the corresponding plug-in density estimates. Moreover, the resulting
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Figure 2: Up: Results for mixture (6); Middle: Results for mixture (7); Down: Results for galaxy

dataset. Reordered values according to (a) Pivotal Reordering and (b) ECR algorithms. (c) Plug-in

density estimates after reordering according to Pivotal Reordering algorithm (dotted line) and ECR

algorithm (solid line) and the true pdf (dashed line).

ergodic averages are presented in the first two rows of Table 1. Clearly, there are major differences

between the results obtained by the two reordering schemes and this is due to the fact that for

both datasets the posterior distribution has minor modes, i.e., it exhibits genuine multimodality.

Notice that in mixture (6), the second and third components are close to each other. Therefore,

the sampler is expected to often combine them to one, leaving one component empty with its

parameter values generated from the prior distribution. Indeed, in 20000 iterations (after burn-

in), the relative frequency of the existence of an empty component was almost 17%. Since the

means’ prior variance is large (recall that Richardson and Green’s choice for the prior variance is

the square of the data midrange), a value for the mean generated from the prior has 95% probability

to lie in the interval (−110, 151). So, the generated value for the mean of an empty component

may be quite far from the corresponding high posterior density area. Under the standard Pivotal

Reordering algorithm, if the generated value from the prior is too small (resp., large) then the

empty component will be relabelled as the one corresponding to the smallest (resp., largest)

14



Pivotal Reordering ECR

Ê(µ|x) 23.08 17.62 −20.59 20.46 19.61 −19.96

(.419) (.391) (.122) (.016) (.194) (.003)

Ê(σ2|x) 1.83 2.27 1.42 2.01 2.15 1.36

(.278) (.270) (.021) (.025) (.071) (.009)

Ê(p|x) .522 .418 .060 .723 .216 .061

(.016) (.016) (.000) (.011) (.011) (.000)

Ê(µ|x) 21.61 30.06 18.40 33.25 25.82 22.96 25.28 18.80 32.95 29.13

(.260) (.179) (.101) (.059) (.536) (.005) (1.007) (.009) (.025) (.007)

Ê(σ2|x) 1.47 1.05 1.86 1.69 0.80 1.01 1.57 1.92 1.80 0.56

(.115) (.109) (.063) (.064) (.062) (.006) (.056) (.015) .(.038) (.008)

Ê(p|x) .222 .141 .317 .128 .192 .255 .070 .360 .138 .178

(.001) (.010) (.015) (.005) (.007) (.003) (.005) (.007) .(.003) (.003)

Ê(µ|x) 7.92 16.35 19.86 22.21 25.53 34.60 9.71 18.29 19.88 22.75 23.00 32.84

(.100) (.083) (.046) (.038) (.071) (.094) (.002) (.129) (.009) (.015) (.133) (.039)

Ê(σ2|x) 0.70 1.19 1.40 3.17 1.94 1.87 0.57 2.15 0.79 2.63 2.10 2.05

(.017) (.034) (.133) (.219) (.068) (.087) (.009) (.101) (.028) (.055) (.115) (.125)

Ê(p|x) .081 .104 .286 .307 .179 .043 .090 .064 .335 .387 .077 .047

(.000) (.004) (.004) (.004) (.005) (.000) (.000) (.003) (.003) .(.005) (.003) (.000)

Table 1: Ergodic averages and their standard errors for the datasets modelled with univariate normal

mixtures. Up: mixture (6). Middle: mixture (7). Down: Galaxy dataset.

mean. This clearly leads to underestimation of the smallest and overestimation of the largest

mean. Furthermore, in the case where the value generated from the prior lies in the interval

(−20, 20), the empty component will be often relabelled as the one corresponding to the middle

mean resulting in its underestimation as well. On the contrary, the ECR algorithm explicitly takes

care of the above situation. As we can see in Figure 2(b), the resulting reordering succesfully solves

the label switching problem by taking into account the minor mode corresponding to the existence

of an empty component. Moreover, this produces a better fit since the first two components have

their means in the high posterior probability area. The generated values from the prior are always

assigned to the third label and so, the extreme values counterbalance each other.

In the case of mixture (7) the large sample size leaves no room for empty components to appear;

here, the relative frequency of empty components was only 1.5% and so, the values generated from

the prior did not affect much the estimates as in the previous example. Therefore, one would expect
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the two algorithms to perform similarly. However, this is not the case as we are facing another

occasion of genuine multimodality. The reorderings of the means arising by the two algorithms

are illustrated in the middle row of Figure 2.

Look first at the means reordering produced by the ECR algorithm. We can see that there are

four “stable” components and one with its values gathered in two regions: one around 19, which

is the true value of the second component’s mean, and one in a seemingly nonsense area in the

interval (30, 33). This happens because for many iterations the sampler combined the first two

components to one and, instead of creating one empty component, it split the fifth component

into two having similar means and different variances. So, we can conclude that there are two

competing models with five components that fit well to the data: one with the two first and

another with the two last components having nearby (or possibly equal) means. On the other

hand, the standard Pivotal Reordering algorithm treats the simulated output as before, and so,

the relabelling results in a reordered output that does not highlight the two isolated modes of the

posterior distribution at all.

4.3 Galaxy dataset

In this section we demonstrate the performance of our method on the well-known galaxy dataset.

The data consist of n = 82 galaxy velocities (in 103 Km/Sec) diverging from our own, sampled from

the conic sections of Corona Borealis. According to Richardson and Green (1997) who fit a mixture

of normal distributions, the most probable number of components equals six. Considering the same

number of components, we ran the standard random beta model for 60000 iterations (after 10000

iterations for burn-in) and then reordered the output via the ECR and the Pivotal Reordering

algorithms. The results for the components means as well as the data histogram together with the

corresponding plug-in densities are illustrated in the last row of Figure 2. Moreover, the resulting

posterior mean estimates are presented in the last row of Table 1. Notice that, similarly to the first

example of the previous subsection, the Pivotal Reordering algorithm results in underestimation

and overestimation of the smallest and largest mean, respectively. This is a consequence of the fact

that the posterior probability of the existence of at least one empty component is considerably

large (over 30%). Note that our estimates for the components’ means are in agreement with

those reported by Jasra et al. (2005), Ê(µ|x) = (9.71, 19.01, 19.88, 22.71, 22.86, 32.92), obtained
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Figure 3: Galaxy dataset: Reordered output for the component means after applying the ECR algorithm

for a three t4 component model.

via the KL divergence based relabelling algorithm of Stephens (1997a, 2000). We have also run

Stephens’ algorithm for comparison purposes and we found that all parameters’ estimates indeed

agree. Of course, in this example the truth is unknown but the fact that the two methods give

essentially the same answers is clearly favourable for the ECR algorithm since its computational

cost is considerably smaller. More specifically, in 20 independent runs of both algorithms the

corresponding average CPU times needed for the relabelling part were 1.56 and 256.68 seconds,

respectively.

Next, we consider the approach of Stephens (1997a) who modelled the data as a mixture of

t4 distributions and compare our relabelling method with that recently presented by Grün and

Leisch (2009). Following them, we fix the number of components to k = 3 and ran Stephens’

algorithm. The reordered values of component means are plotted in Figure 3. Observe first that

the label switching problem is succesfully solved as the reordered simulated values of the means

clearly occupy distinct areas. Secondly, the genuine multimodality of the posterior distribution

(referred also by Stephens, 1997a, and Grün and Leisch, 2009) is revealed and the high posterior

probability areas of the means corresponding to the two modes are succesfully identified. More

specifically, we see that the first component mean takes values in a stable region around 9.7 while

the other two components switch between 19.8 and 32.8 (second component) and 21.3 and 22.6

(third component). These results are in agreement with those produced by Grün and Leisch

(2009).

Grün and Leisch (2009) included a clustering procedure in their algorithm in order to identify

the genuine modes of the posterior distribution. We did the same to the reordered output produced

by our approach for comparison purposes. More specifically, we applied a K-means clustering

algorithm (considering two clusters) to the reordered values of (p, µ, σ2) and obtained the results

displayed in Table 2. Combining these results with the reordered output in Figure 3, it is obvious

that the two genuine posterior modes differ with respect to the second and third components.
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Cluster Weight µ1 µ2 µ3 σ2

1 σ2

2 σ2

3 p1 p2 p3

1 .831 9.69 19.77 22.56 0.47 0.60 4.05 .093 .319 .588

(.053) (.002) (.035) (.009) (.010) (.029) (.016) (.001) (.002) (.002)

2 .169 9.70 33.06 21.28 0.78 2.14 3.53 .093 .045 .862

(.053) (.003) (.107) (.004) (.027) (.148) (.019) (.000) (.000) (.000)

Table 2: Galaxy dataset: Cluster weights and centroids of the reordered MCMC output after applying

the ECR algorithm for a three t4 component model.

Finally, we mention the absolute agreement of the estimated weights of the two clusters with

those reported by Grün and Leisch.

4.4 Multivariate normal mixtures

In order to check the perfomance of the proposed method in multivariate settings, we applied

the ECR algorithm to MCMC samples generated from the generalization of the random beta

model given by Dellaportas and Papageorgiou (2005) considering the number of components to be

known. For this purpose, two datasets of bivariate normal mixtures are considered. The first one is

a simulated dataset of 200 observations from the distribution
∑4

j=1 pjN2(µj,Σj) with actual values

shown in Table 3. Notice that this is a challenging case since there are overlapping components.

The second one is the version of the Old Faithful dataset analyzed by Stephens (1997a) as well

as by Dellaportas and Papageorgiou (2005). The data consist of 272 bivariate observations: the

duration of the eruption and the waiting time before the next eruption. According to Dellaportas

and Papageorgiou (2005) the most probable number of components equals three.

The scatterplots of the two datasets are shown in Figure 4(c). In the same graph the corre-

sponding plug-in density estimates arising after applying the ECR algorithm to MCMC outputs

of size 10000 and 30000, respectively, (after burn-in) are also plotted. Moreover, the reordered

values of the component means are shown in Figures 4(a) and (b). As we can see, the samples

have been succesfully reordered. The corresponding estimates of the posterior means are in Tables

3 and 4.

For the simulated data the posterior means estimates as produced by the ECR algorithm are

quite close to the true values; see Table 3. It is important to note that a constraint on the means

would fail to isolate the mode of the posterior as can be concluded from the first row of Figure
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parameter true value KL ECR standard errors

p (.25, .25, .25, .25) (.30, .21, .24, .25) (.30, .21, .24, .25) (4, 3, 4, 4)× 10−4

µ

(4.5,−2.5)

(−3.0, 4.0)

(6.5, 7.0)

(7.0,−3.0)

(4.43,−2.36)

(−2.91, 4.04)

(6.73, 7.34)

(6.99,−2.77)

(4.43,−2.36)

(−2.91, 4.04)

(6.73, 7.34)

(6.99,−2.77)

(.0014, .0015)

(.0022, .0012)

(.0028, .0036)

(.0036, .0065)

Σ

(
0.5 −0.25

−0.25 0.5

)

(
0.5 −0.25

−0.25 0.5

)

(
4 2.5

2.5 4

)

(
4 2.5

2.5 9

)

(
0.54 −0.20

−0.20 0.81

)

(
1.74 −0.77

−0.77 0.69

)

(
3.30 2.14

2.14 4.09

)

(
3.55 2.27

2.27 10.13

)

(
0.54 −0.20

−0.20 0.81

)

(
1.74 −0.77

−0.77 0.69

)

(
3.30 2.14

2.14 4.09

)

(
3.55 2.27

2.27 10.13

)

(
.0022 .0013

.0013 .0027

)

(
.0045 .0026

.0026 .0018

)

(
.0071 .0072

.0072 .0106

)

(
.0097 .0119

.0119 .0384

)

Table 3: Posterior means estimates of the parameters for the simulated multivariate dataset according

to Stephens’ KL algorithm and the ECR algorithm (10000 iterations following a burn-in of 1000).

4(a,b). This is also the case for the variances and covariances (not shown here). Moreover, the high

posterior probability area of the weights is close to the area at which they are all equal and thus

the components could not be well separated by imposing a constraint on them either. In Table

3 we see that the results completely agree with those obtained by applying the KL relabelling

algorithm of Stephens. However, the average CPU time needed by the ECR algorithm for the

relabelling part was once more considerably smaller compared to the KL algorithm (0.45 versus

16.31 seconds in 20 independent runs, respectively).

For the Old Faithful dataset the estimates agree with those reported by Dellaportas and Pa-

pageorgiou (2005) (see Table 4) who reordered the output by imposing a constraint on the first

coordinate of the means. This happens because the simulated values of this coordinate are well

separated (see Figure 4). Nevertheless, such artificial IC can be proven quite inefficient in general

settings, as discussed previously.

5 Discussion

A simple yet efficient method to solve the label switching problem has been presented. The method

uses effectively the natural partition of the allocation space into equivalence classes. Every possible

set of the classes representatives Z0 gives rise to a non-symmetric distribution fZ0, see (3), that
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Figure 4: Reordered MCMC outputs of (a) µ1j and (b) µ2j , j = 1, . . . , k, based on ECR algorithm and

(c) scatterplot of the bivariate data along with the corresponding plug-in density estimate. Up: Simulated

dataset from the mixture in Table 3 (k = 4). Down: Old Faithful data (k = 3).

can reproduce the posterior distribution. In practice, Z0 is formed by first selecting a pivotal

allocation vector z∗ and then minimizing the simple matching distance of each equivalence class

from it. In the case where the pivot corresponds to a high probability area of f(z, p, θ|x), the

magnitude of the symmetric modes has totally vanished.

In principle, the determination of Z0 by the MCMC output itself, seems to be annoying; recall

that the convergence stated in Proposition 3.1 occurs for fixed Z0. Of course, Z0 could be chosen

based on a preliminary run, similarly to what Frühwirth-Schnatter (2001) does in order to select a

constraint on the parameter space. But since our approach is based on post-processing the MCMC

output, it is clear that reordering a second MCMC sample (according to the selected Z0) would

not make any difference at all.

The proposed reordering method has many desirable properties. First of all, it does not depend

on the dimensionality of the parameter space. Secondly, it requires small computational effort

compared to other more sophisticated solutions. Third, the distribution of the reordered sample

has exactly the same support as the original posterior distribution. This is a very important

feature, since it can help to reveal all genuine modes (if any) and does not lead to any serious

under– or overestimations of the parameters. Fourth, for all examples we tried, we got essentially

the same answers as those reported by the developers of any other “good” approach. Although

this can not serve as a formal argument, it is an encouraging fact for the use of the ECR algorithm
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parameter D&P ECR standard error

p (.572, .340, .087) (.590, .351, .059) (.0052, .0004, .0052)

µ

(4.34, 80.34)

(2.02, 54.48)

(3.44, 70.19)

(4.33, 80.33)

(2.04, 54.63)

(3.53, 71.33)

(.0019, .0129)

(.0006, .0080)

(.0198, .3182)

Σ

(
0.14 0.47

0.47 32.86

) (
0.15 0.63

0.63 32.46

) (
.0010 .0073

.0073 .1368

)

(
0.06 0.32

0.32 34.58

) (
0.09 0.66

0.66 38.55

) (
.0003 .0023

.0023 .0488

)

(
0.29 3.32

3.32 85.98

) (
0.30 1.75

1.75 82.07

) (
.0820 .7422

.7422 16.66

)

Table 4: Old Faithful dataset: Posterior means estimates reported by Dellaportas and Papageorgiou

(2005) and based on the ECR algorithm together with their estimated standard errors (30000 iterations

following a burn-in of 20000).

since it is by far more simple and less computationally demanding than these approaches.

In all of the examples presented in this paper the number of components k is considered known.

However, this does not limit the applicability of the proposed method. Recall that in the case of

unknown k where transdimensional MCMC algorithms are used (e.g. the reversible jump MCMC

of Richardson and Green, 1997), estimates of the parameters are obtained conditional on the

number of components, i.e., one set of estimates for each value of k. Similarly, the ECR algorithm

must be applied separately to each subset of the output that corresponds to the same k.

In many cases, the original algorithm does not use data augmentation in the first place. For

instance, this holds for the Metropolis–Hastings algorithm. However, it is always valid to simu-

late the allocations after having obtained the (p, θ)(i), i = 1, . . . , M , output. Generation of z(i)

conditional on (p, θ)(i) (and x) under model (1) is straightforward and the augmented sample

(z, p, θ)(i), i = 1, . . . , M , targets f(z, p, θ|x) as required. Afterwards, the ECR algorithm can

be applied to the augmented sample as before. Simulations (not reported here) have shown that

everything works as in the previous examples.

It is evident that the ECR algorithm has many common characteristics with previous ap-

proaches to the label switching problem. The restriction of the allocation space to Z0 can be

considered analogous to the ICs imposed to the parameter space, see Subsection 2.1. The deter-

mination of Z0 based on a pivot is a modification of the Pivotal Reordering algorithm of Marin et

al. (2005). Finally, the fact that the algorithm is applied to the allocation space could be consid-
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ered as a slight resemblance to Stephens’ (2000) KL based approach. The basic difference is that

Stephens deals with the similarity of the allocations’ estimated posterior distribution rather than

the observed allocations themselves. However, the previous approaches are either inefficient or

computationally unappealing in practice. For instance, ICs and the default version of the Pivotal

Reordering algorithm work well only in cases where the mixture components are far apart. On the

other hand, the relabelling algorithms via loss functions and the KL based algorithm of Stephens

(2000) are quite elaborate methods, but the high computational cost limits their applicability.

Therefore, we strongly suggest ECR algorithm for the solution of the label switching problem

since it is both efficient and easy to be applied.
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SUPPLEMENTAL MATERIALS

Appendix and Rweave code: The supplemental materials include (a) an appendix with the

proofs of Lemma 3.1 and Proposition 3.1 as well as some other technical results and (b) the

file ecr urb.Rnw which contains an Rweave code that can be used to replicate the analysis

for the simulated datasets from the mixtures in Section 4.2 and for the galaxy dataset as

well as its companion file Readme.pdf.
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Frühwirth-Schnatter, S. (2001). Markov chain Monte Carlo estimation of classical and dynamic switch-

ing and mixture models. Journal of the Royal Statistical Society, Series B, 56, 363–375.

Grün, B., and Leisch, F. (2009). Dealing with label switching in mixture models under genuine multi-

modality. Journal of Multivariate Analysis, 100, 851–861.

Jasra, A., Holmes, C.C. and Stephens D.A. (2005). Markov Chain Monte Carlo methods and the label

switching problem in Bayesian mixture modelling. Statistical Science, 20, 50–67.

Hurn, M., Justel, A. and Robert, C.P. (2003). Estimating mixtures of regressions. Journal of Compu-

tational and Graphical Statistics, 12, 55–79.

Marin, J.M., Mengersen, K. and Robert, C.P. (2005). Bayesian modelling and inference on mixtures of

distributions. Handbook of Statistics, 25, D. Dey and C.R. Rao (eds). Elsevier-Sciences.

Marin, J.M. and Robert, C.P. (2007). Bayesian Core: A Practical Approach to Computational Bayesian

Statistics, Springer-Verlag, New York.

Richardson, S. and Green, P.J. (1997). On Bayesian analysis of mixtures with an unknown number of

components (with discussion). Journal of the Royal Statistical Society, Series B, 59, 731–792.

Papaspiliopoulos, O. and Roberts, G.O. (2008). Retrospective Markov chain Monte Carlo methods for

Dirichlet process hierarchical models. Biometrika, 95, 169–186.

Stephens, M. (1997a). Bayesian methods for mixtures of normal distributions. D. Phil dissertation,

Dept. Statistics, Univ. Oxford.

Stephens, M. (1997b). Discussion of “On Bayesian analysis of mixtures with an unknown number of

components” by S. Richardson and P.J. Green. Journal of the Royal Statistical Society, Series B,

59, 768–769.

Stephens, M. (2000). Dealing with label Switching in mixture models. Journal of the Royal Statistical

Society Series B, 62, 795–809.

23



Appendix to

“An artificial allocations based solution to the label switching

problem in Bayesian analysis of mixtures of distributions”

published in the Journal of Computational and Graphical Statistics

Panagiotis Papastamoulis and George Iliopoulos1

Lemma A.1. The posterior distribution of (z, p, θ) satisfies

f(τz, p, θ|x) = f(z, τ(p, θ)|x), ∀τ ∈ Tk. (A.1)

Moreover, for the conditional distribution of (p, θ) given (x, z) it holds

f(p, θ|x, τz) = f(τ(p, θ)|x, z), ∀τ ∈ Tk. (A.2)

Proof. Let I = {1, . . . , n}. For any z ∈ Z write I = I1(z)∪ · · ·∪ Ik(z) with Ij(z) =

{i : zi = j} and let nj(z) = card (Ij(z)) =
∑n

i=1 I(zi = j), j = 1, . . . , k. Also,

let g(p, θ|x, z) :=
∏k

j=1

∏
i∈Ij(z) f(xi|θj)p

nj(z)
j . Then, we can write f(z, p, θ|x) =

f(x|z, p, θ)f(z|p)f(p, θ)/f(x) = g(p, θ|x, z)f(p, θ)/f(x). Hence, for every τ ∈ Tk

we have that

f(τz, p, θ|x) = g(p, θ|x, z)f(p, θ)/f(x). (A.3)

Let τ−1 = (t′1, . . . , t
′
k) be the reverse permutation of τ = (t1, . . . , tk). Observe that

Ij(τz) = {i : tzi
= j} = {i : zi = t′j} = It′j

(z). Hence,

g(p, θ|x, τz) =

k∏

j=1

∏

i∈Ij(τz)

f(xi|θj)p
nj(τz)
j =

k∏

j=1

∏

i∈It′
j
(z)

f(xi|θj)p
nt′

j
(z)

j

=
k∏

j=1

∏

i∈Ij(z)

f(xi|θtj )p
nj(z)
tj

= g(τ(p, θ)|x, z). (A.4)

1Corresponding author. Department of Statistics and Insurance Science, University of Piraeus,
80 Karaoli & Dimitriou str., 18534 Piraeus, Greece e-mail: geh@unipi.gr
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Now, notice that the prior distribution is invariant with respect to the labelling,

that is, f(p, θ) = f(τ(p, θ)), ∀τ ∈ Tk. Substituting this together with (A.4) into

(A.3) we get f(τz, p, θ|x) = f(z, τ(p, θ)|x) and the proof of (A.1) is completed.

Finally, (A.2) follows immediately from (A.1) and the fact that f(z, p, θ|x) =

w(z|x)f(p, θ|x, z) and w(z|x) is invariant with respect to the permutations of the

labels.

Proof of Lemma 3.1. After rearranging the kn terms, (2) can be written as

f(p, θ|x) =
∑

z∈Z0

∑

z
∗∈Ξz

w(z∗|x)f(p, θ|x, z∗). (A.5)

But

∑

z
∗∈Ξz

w(z∗|x)f(p, θ|x, z∗) =
∑

τ∈Tk

w(τz|x)

(k − k0(τz))!
f(p, θ|x, τz)

=
w(z|x)

(k − k0(z))!

∑

τ∈Tk

f(p, θ|x, τz). (A.6)

Substituting (A.2) and (A.6) into (A.5) we get

f(p, θ|x) =
∑

z∈Z0

w(z|x)

(k − k0(z))!

∑

τ∈Tk

f(τ(p, θ)|x, z)

=
1

k!

∑

τ∈Tk

k!
∑

z∈Z0

w(z|x)

(k − k0(z))!
f(τ(p, θ)|x, z) =

1

k!

∑

τ∈Tk

fZ0(τ(p, θ)|x)

as stated, and this completes the proof. �

Lemma A.2. Let (z, p, θ) ∼ f(z, p, θ|x) and, conditional on (z, p, θ), τ has the

uniform distribution on Tz defined in Section 3. Then, τ−1(p, θ) ∼ fZ0(p, θ|x).

Proof. Observe first that τ depends solely on z and there are exactly (k − k0(z))!

permutations that switch z to Z0. Thus, the joint pdf of τ, z, p, θ is

f(τ, z, p, θ|x) = f(p, θ|x, z)f(z|x)f(τ |z) =
w(z|x)

(k − k0(z))!
f(p, θ|x, z)I(τ ∈ Tz).

(A.7)
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Let (τ ∗, z∗, p∗, θ∗) = (τ, τz, τ−1(p, θ)). Then, for any τ ∈ Tk, u ∈ Z0 and measur-

able subset C of the space A (say) of (p, θ) we have

P(τ ∗t, z∗ = u, (p∗, θ∗) ∈ C|x) = P(τ = t, τz = u, τ−1(p, θ) ∈ C|x) =

P(τ = t, z = τ−1u, (p, θ) ∈ τC|x) =
w(t−1u|x)

(k − k0(t−1u))!

∫

tC

f(p, θ|x, t−1u)dpdθ,

since t ∈ Tt−1
u

for all t ∈ Tk and u ∈ Z0. But w(t−1u|x) = w(u|x) and k0(t
−1u) =

k0(u), so, using also (A.2), the last expression becomes

w(u|x)

(k − k0(u))!

∫

tC

f(p, θ|x, t−1u)dpdθ =
w(u|x)

(k − k0(u))!

∫

C

f(p, θ|x, u)dpdθ.

Hence, the density of (τ ∗, z∗, p∗, θ∗) (with respect to the appropriate product mea-

sure) is

f ∗(t, u, p, θ|x) =
w(u|x)

(k − k0(u))!
f(p, θ|x, u), t ∈ Tk, u ∈ Z0, (p, θ) ∈ A, (A.8)

while the marginal distribution of p∗, θ∗ = τ−1(p, θ) is

f ∗(p, θ|x) =
∑

t∈Tk

∑

u∈Z0

w(u|x)

(k − k0(u))!
f(p, θ|x, u) = k!

∑

u∈Z0

w(u|x)

(k − k0(u))!
f(p, θ|x, u)

i.e., fZ0(p, θ|x) as stated.

Proof of Proposition 3.1. Clearly, the augmented sequence (τi, z
(i), (p, θ)(i)) is a

Markov chain with limit distribution f(τ, z, p, θ|x) in (A.7). Now, (τ ∗, z∗, p∗, θ∗)(i)

is an invertible transformation of (τi, z
(i), (p, θ)(i)), so the corresponding sequence

is a Markov chain as well with limit distribution f ∗(τ ∗, z∗, p∗, θ∗|x) in (A.8). The

result follows again after marginalization. �
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