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Abstract

In this paper, we prove that blocks of ordered data formed by some condition-
ing events are mutually independent. We establish this result by considering the
usual order statistics, progressively censored order statistics, and concomitants of or-
der statistics.
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1 Introduction

Let X1, -+ ,X, be independent and identically distributed (iid) random variables from
some distribution with cumulative distribution function (cdf) F', and X1, < -+ < Xy
be the corresponding order statistics (OS). Properties related to conditional independence
of the ordered observations are mainly based on the Markov property. It is well-known
[see, for example, Arnold, Balakrishnan and Nagaraja (2008) and David and Nagaraja
(2003)] that when F' is continuous, the ordered sample forms a Markov chain and so,
conditional on Xj., = z, the random vectors (Xi.n,--- , Xj_1.n) and (Xjqy1m, -+ » Xnm)
are independent. On the other hand, if F' is discrete with support containing more than
two points, the order statistics do not form a Markov chain due to the possibility of ties
[see Nagaraja (1982)]. However, they can become Markovian by conditioning on some

suitable events; see, for example, Riishendorf (1982) and Nagaraja (1986).

This situation is similar in the case of ordered data arising from some censoring schemes
as well. Consider, for example, progressive Type-II right censoring wherein at the times of
observed failures a pre-fixed number of surviving units are withdrawn. If the underlying
distribution is continuous, these progressively censored order statistics also form a Markov
chain; see Balakrishnan and Aggarwala (2000). This is not true in the discrete case
as shown by Balakrishnan and Dembiriska (2008), but here again conditioning on some

suitable events may lead to Markovian structure.
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While deiving the exact distribution of the maximum likelihood estimator (MLE) of
the exponential mean parameter under different forms of censoring and its stochastic
monotonicity, Balakrishnan and Iliopoulos (2008) required the distribution of a function
of exponential OS that could be expressed as a discrete mixture with the value of the
mixing variable D (say) being precisely the number of the OS that are at most some
pre-fixed number T'. It was observed by these authors, in this case, that conditional on
D = d, the first d OS (i.e., those that are at most T') are independent of the rest (i.e.,
those that are larger than T'). This property results from the factorization of the joint
probability density function (pdf) of OS. It turns out that this property holds in more
general settings wherein the underlying distribution may be either continuous or discrete,
and the cut-points being more than one. Furthermore, this conditional block independence
property holds also for progressively Type-I and Type-II right censored OS as well as for

concomitants of OS and generalized OS.

The rest of this paper proceeds as follows. In Section 2, the block independence result
is presented for the case of (usual) OS. In Section 3, we extend this result for progressively
Type-I and Type-II right censored OS (PCOS). In Section 4, we show the conditional
independence of concomitants of blocked OS. Finally, some concluding remarks are made

in Section 5.

2 Usual order statistics

Let X1q,---,X,, be independent random variables from some distribution with cdf F' and
X1 < -+ < X,.p be the corresponding order statistics. For some fixed T € R, let
D = #{X's < T}. Then, the following theorem presents the conditional independence

result for the usual order statistics.

Theorem 1. Conditional on D = d, the vectors (X1, , Xamn) and (Xagiim, -, Xnm)
are mutually independent with
d
(Xlzn’ te aXd:n) = (‘/leda T )Vd:d)a
(Xd—i—l:n’ to ’Xn:n) (len—da R Wn—d:n—d)’ (1)
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where Vi,--- Vg are iid from F but right-truncated at T, and Wy,--- ,W,,_q are iid from
F but left-truncated at T'.

Proof. Recall that D has the binomial distribution B(n, F/(T')), irrespective of whether F

is discrete or continuous, with probability mass function (pmf)

P(D=d) = (Z) (F(T)}{1 - F(T)}", d=0,1,---,n. (2)



When d = 0 or n, one of the two random vectors has zero dimension and the result holds

in this case trivially. So, in what follows, we assume d € {1,--- ,n — 1}.

Let us first consider the case when F' is an absolutely continuous distribution with f
as the corresponding pdf. Then, the conditional joint pdf of the order statistics is given
by
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g(x1, - xp|D = P = d) 7i) Iy < <ag<T <xgpq1 <+ < Tp),

where I(A) denotes the indicator function for event A. With (2), we then have
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which proves the result in (1).

In the case when F' is discrete, let us consider the integral representation of the joint

pmf of the order statistics given by

F(z1) F(xq) F(zgy1) F(zn)
F(x1— F(zgy1— Fzn—)

for 1 < -+ < xp; see Arnold, Balakrishnan and Nagaraja (2008) and David and Nagaraja
(2003). Clearly, the conditional joint pmf of the order statistics, given D = d, is then
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forz; < <y < T <2941 <+ < 2y, which in turn yields
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Now, let Fi(xz) = 5((;)) and Fy(z) = %{T()T) denote, respectively, the cdf’s of the right-

and left-truncated versions of F' at T'. Then, by making the transformations v; = ﬁT_) for
t=1,---,d and w; = ulfg((TT)) fori=d+1,---,n, we readily have
Fi(z1) Fi(zaq)
g(x1, - ,xp|D=d) = d!/ / dvg---duvy
Fi(zi—) Fi(zq—)



Fo(zg41) Fa(xn)
x(n—d)!/ / dwy, - - - dwgy,
Fo(zay1—) Fy(zn—)

which establishes the required result. O

Remark 1. In the case of absolutely continuous distributions, the result can also be viewed

from the Markovian property of order statistics. Indeed, the conditional distribution of

(X1ms s Xams Xdrtms - Xnen), given D = d, is exactly the same as the conditional
distribution of (Xt.ny1, s Xamt1, Xaromits s Xntimr1), given Xy = 7. In
this case, (X141, s Xame1) and (Xgyomr1s -+ s Xn+1mr1) become independent and are

distributed as OS from the above stated right- and left-truncated distributions respectively.

Along the same lines, the following theorem states the conditional independence in the
case of multiple cut-points. Let —oo =Ty <11 < -+ < T, < 00, and let D; = #{X's €
(Tj-1,1}]}, j = 1,--- ,p. For simplicity in notation, for any vector (di,--- ,d,), we set
do =0 and d(j;y = Y7, d;.

Theorem 2. Conditional on (Dy,--- ,Dy,) = (di,--- ,dp), the random vectors
(Xl:na o ’Xdlzn)) (Xd1+1:n) e aXdl-i-dg:n)a R (Xd(p)-f—l:na o ’Xn:n)

are mutually independent with

d () () .
(Xd(]-_l)—l—l:n’ T )Xd(]-):n) - (Vl;de) Ty Vdjj;d].) fOT J = 15 D,

d (p+1) (p+1)
(Xd(p)Jrl:na"' Xnm) = (Vlfzhd(p),--- ,and(p):nfd(p)), (3)
where Vl(j),--- ,Vd(jj), j=1,--+,p, are iid from F but doubly truncated in the interval
(Tj-1,T}], and Vl(pﬂ), e ,Vrffz(lz) are iid from F but left-truncated at T),.

Proof. The result in (3) follows by induction along the same lines as in the proof of
Theorem 1. O

3 Progressively right censored order statistics

3.1 Type-I progressive censoring

Let Xy, -+, X, be arandom sample from some lifetime distribution with cdf F'. In Type-I
progressive right censoring, m timepoints T} < --- < 1), are pre-fixed, and R; surviving
units are censored at time T;, ¢ = 1,--- ;m — 1. The experiment terminates at time T},,
at which point all the remaining R, units are censored. The observed failures times
form the so-called Type-I progressively right censored order statistics; see, for example,
Balakrishnan and Aggarwala (2000) and Balakrishnan (2007). Clearly, there is a positive

probability that at some time 7;, ¢ < m, less than R; units are surviving in which case



the experiment would simply terminate at T; instead of at T},. Although this set-up has
been explained from a life-testing point of view which usually involves only non-negative
random variables, these Type-I progressively right censored order statistics can clearly be
defined for discrete and/or non-positive random variables as well.

As before, let us set Ty = —oo and Dj = #{X's € (Tj_1,Tj]}. Let ( YD( ERSEIEEE YD(]))
be the vector consisting of the ordered X’s falling in the interval (T;_1,T}]. (Of course, in
case when D; = D;) — D(;_1) = 0 for some j, then the corresponding Y-vector is of zero
dimension.) Note that the random variables Y7, -- Yp,,, are the Type-I progressively
right censored order statistics (Type-I PCOS). Then, the following theorem establishes
the conditional block independence of Type-1 PCOS.

Theorem 3. Conditional on (D1, ,Dy,) = (d1,- -+ ,dy), the random vectors

(Yl) aYdl)) (Ydl-l—la"' )Yd(g))a R (Yd(m_1)+1)"' aYd(m))

are mutually independent with
d y0) ()
(Yd(j71)+1’ T ’Yd(j)) - (Vlzjd]-’ T Vdjj:d]-)7 (4)

where Vl(j),--- ,Vd(J_j) are id from F but douly truncated in the interval (T;—1,Tj], for
j = 15 e, M

Proof. In what follows, we use the convention (?) = 1 when j = 0 and 0 otherwise. Then,
the joint pdf of Dy, -+, Dy, Y7, -+ YD, 18

" (max{n —d;_1) — Rii_1),0
g(dla"'7dm7y17"'7yd(m)):H( { (dl) ( 1) }>

i=1
X dl'{ H yd(Z 1)+] }{1 _F( )}CZ ( i—1 < yd(Z ntl X <0< ?/d(i) < le)) (5)

for (dl,"' ,dm) €D = {(dl, ,dm) € ZT, 0 < dl < maX(n - d(l’*l) - R(i*l))o)’ 1=
L,---,m}, where (; = min{R;, max(n — dg; — R(_1),0)}, i = 1,--- ,m. Moreover, the
joint pmf of Dq,---, D, is

T (max{n —d;_1) — Rii_1),0 , ,
gldr, - odm) = ][ ( = P }){Fm) — F(T,_)}{1 - F(T)}%
i=1 ¢
for (dy,--- ,d,) € D. Hence, for any (di,--- ,d,,) € D, we obtain

g(d17”' 7dm7y17"' 7yd(m))
g(d, -+, dm)

y 1y+i)
~1[ {H d 1)+J 1)} [Tt < yay i1 <o <yay <),

Z

g(yla"' )yd(m)|d1)'” )dm) =




which proves the assertion for the continuous case.

Next, for proving the assertion for discrete F', we can use the integral representation of
the pmf based on the probability integral transformation. More specifically, the joint pmf
of Dy,--+,Dy,,, Y1, YD, has the same form as in (5), but with the d;-fold integral

F(yag;_qy+1) F(ya ;) ) , o
fF( (-1 )---fF( @7 dug, -~ duy in place of H?’Zl f(¥a;_,+j)- Then, upon dividing

Yd(;_q1)+1 Yd gy ~)
it by the joint pmf of Dy,---,D,, which has the same form as before and making the
change of variables v; = %554%, j=1,---,d;, for the u’s in the ¢-th interval, we
arrive at the required result. ]
Remark 2. Note that by choosing Ry = --- = R,,_1 = 0, Theorem 3 reduces to Theorem

2. Hence, the above proof applies to that theorem as well, although a direct proof for

Theorem 2 along the lines of Theore 1 would be much simpler.

Remark 3. The above result has been used recently by Balakrishnan, Han and Iliopoulos
(2008) to establish that the sum of Type-I PCOS under exponentiality is stochastically
increasing with respect to the mean 6 of the underlying exponential distribution, a property

that is essential to construct exact confidence intervals for the parameter 6.

3.2 Type-II progressive censoring

Let (X ﬁ’;n ’Rm), e ,X,(,f}n’;;;’Rm)) be the Type-II progressively right censored order statis-
tics (Type-II PCOS) with progressive censoring scheme (Ry,--- , R,,) from some distribu-
tion with cdf F(-). Under this scheme, n iid units are placed under a life-test, and when
the first failure occurs, R; of the n—1 surviving units are randomly withdrawn; at the time
of the next failure, Rs of the (n —2 — R;) surviving units are randomly withdrawn, and so

on; finally, at the time of the m-th failure, all the surviving R,,, units are withdrawn. The

(R1,~~~,R ) (R1,~~~,R )
SRS 7Xm:m:n m’

m failure times that are observed in this manner, denoted by X, 7 ,

are referred to as Type-II progressively right censored order statistics (Type-II PCOS).
For a fixed point T, let D denote the number of Type-II PCOS that do not exceed T. We
then have the following conditional independence result for these Type-1I PCOS.

Theorem 4. Conditional on D = d, the random vectors (Xf:]frlu’;;"Rm),--- ,Xc(lfé:’;"Rm))
and (Xﬁll’:;;:’fm), e ,X,Sf,%;;;;’Rm)) are mutually independent with
(R a"'aRm) (R ""’Rm) i (K ""’K) (K 7"'7K )
(Xlzré:n )T 7Xd:ni:n ) (Vl:d:iiJrK(d? FAN d:d:iiJrK(d? )7

(Ri, Rn) Rivo Ry 4 (g (Ragir Rom) (Rag, Bon)
(Xd+1:m:n LA 7Xm:m:n " ) - (I/Vl:mfd:nfalfl%(d)7 o Wmfd:mfd:nfde(d))’ (6)

where Vi, -+ ,Vd+K(d) are 1id from F but right-truncated at T', W1, - - - ,Wn,d,R(d) are iid
from F but left-truncated at T, R(g) = Z?Zl Ri, Kg) = Z?Zl K;, and (Ky,--- ,K4) have
joint pmf



d 4 |
(—1)*{1 — F(T)} i=a-ks1 (1+R:)
ki,--- .k
p(k1 d) = ;){H dk1+R }{dek+1zldk;+1(1+R)}

d .
i=1 Luj=i J v

for()gkigRi,z‘:l,--- ,d.

Proof. First, let us consider the case when F' is a continuous distribution. Recall that the
joint pdf of the PCOS is

f(wl,---,xm):{HZ(HR }Hf W1 — Fa)Y I(zy < -+ < ).

i=1 j=i
Conditional on D = d, the joint pdf remains proportional to the above quantity, and so

the independence result follows immediately since the joint pdf factors into two terms

corresponding to the two blocks.

For deriving the conditional distributions, conditional on D = d, we start with the pmf
of D given by [see Xie, Balakrishnan and Han (2008)]

d VI S 1 (1R TTd m ‘
PO =)= e L 2 Ry
k=0

, d=0,1,---,m.
S (U R H T i s g (1 Ri)}
(7)
The conditional pdf of PCOS, given D = d, is clearly
flx1,...,xm
f(fI,'l,"' ,.’I,'m’D:d) = ﬁ[(fﬂl < - <T<xd+1 < - <.’I,'m)
Observe now that for 1 < -+ <2y < T < xg11 < -+ < Ty, f(x1,-++ ,2) equals
d m d m
(IS0 T seon - rens  IT Yoo+ m) T seon - e}
i=1 j=i i=1 i=d+1 j=i =d+1
d m d R; R
~{TI 0+ m) [T S () rm) - Fapy - peoys
i=1 j=i i=1 ki=0 >
m R;
_ Y g1 (14 Rs) flzi) 11— F(z)
x {1 — F(T)}Xian {];LJZ (1+ Ry) 1;L1—F(T) TR

- {ﬁi(l # 1)) L= PR
{ﬁ 3 ( > "““{1—F(T)}Ri"“if(xi){F(T)_F(xi)}ki}
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i=d+1 j=1 i=d+1
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(1+ Rj)}{l — F(T)}Z?idﬂ(lJrRi)
=1 j=1

{ Z i [ﬁ (RZ> F(T)kt1{1 — F(T)}Ri’“l}
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This expression reveals that the conditional distributions of the two blocks are as stated
n (6). Next, in order to obtain the joint pmf of Ky, - , K,,, we have to divide the above
expression by P(D = d) given in (7) and then integrate out the PCOS. If this is carried

out, it can be seen that their joint pmf is as stated in the theorem.

In the case of discrete F', consider the integral representation given by Balakrishnan
and Dembinska (2008),

F(x1) Fzm) M
glzy, - xm) o(/ / H(l —ui)Ridum---dul
F(z1-) F(zm—) ;-1

for x1 < -+ < xp,. The conditional joint pdf of the Type-I1 PCOS, given D = d, is also

proportional to the above quantity, i.e.,

F(x1) F(zg) @
g(xy, - ,xm]D:d)oc/ / H(l—ui)Ridud---dul
F(z1—) F(za—) ;=1

F(zay1) Fzm) ™
X/ / H (1_ui)Ridurn...dud+17

F(xgy1—) Flezm=) ;2441
for 1 < -+ < axg < T < 2441 < -+ < Zy,. As done in the proof of Theorem 1,
upon making the transformations v; = F‘(“T) for i = 1,---,d, and w; = 1 F((TT)) for
i=d+1,---,m, we obtain
Fi(z1) Fi(zq) @ R.
g(xl,---,xm\D:d)oc/ / H{I—F(T)vi} idvg - - - doy
Fy(z1-) Fi(za—) j-1

Fa(z441) Fa(zm) M
% / / H {1-F(T) - [1—F(T)]wi}Ridwn---dwd-i-l’

Fa(xgi1—)

where, as before, F}(x) = 5((;)) 0<x<T,and Fy(z) = %{(;‘F) T < x. Upon writing

{1 - F(T) ~ [1 - F(T)Jwi}® = {1 - F(T)}%(1 - w;) and

{1- P} = {1-F(T)+ F(T)(1 - )}



i() T)Y{1 = P - ),

k;=0

we obtain the result. O

Remark 4. Observe that the conditional distribution of (X{%:’;"Rm), e ,Xc(l:}frlu’;;"Rm))
is the same as the distribution of Type-II PCOS from a sample of random size from F
but right truncated at 7', with a random progressive censoring scheme as well. It is well-
known that right truncation of PCOS does not result in PCOS from the corresponding
right-truncated distribution [see, for example, Balakrishnan and Aggarwala (2000)] due
to the fact that the observations censored before T' could have their values to be larger
than 7. However, their distribution can be expressed as a (multivariate) mixture: K;
represents the (random) number of random variables having their values to be at most T’

among the R; observations that are censored at Xj.,,.p-

Remark 5. As in the case of usual OS, in the continuous case, this result can also be
established from the Markovian property of the Type-II PCOS. Moreover, by Theorem 3.1
of Bairamov and Ozkal (2007), when R; = --- = R,, the PCOS have the same distribution
as the usual OS from the distribution with cdf G(z) = 1—(1—F(z))™™. So, in this special

case the result follows directly from Theorem 1.

The result in Theorem 4 can also be generalized to multiple cut-points as follows.

Theorem 5. Let X1, -, X, be ©id random variables from some distribution with cdf F
and (Xﬁ;n ’Rm)7 e ,X,Sf,g;;;;’Rm)) be the Type-1I PCOS with progressive censoring scheme

(Ri, -+ ,Rp). Let —oo =Ty < Ty < --- < T, < 00 be the cut-points and Dj be the number
of Type-1I PCOS that lie in the interval (T;—1,Tj] for j =1,--- ,p. Then, conditional on

(D1,-++,Dp) = (dy,--- ,dp), the random wvectors
R ) ’ R El El
O eH Xfll;m "),
(R 3T ) (R 3"t )
(Xdl-fl—lmn ’ Xdl—ll—dgmn )’
(R1,+,Rm) Ry,
(X XS ) (8)
are mutually independent with
(o) o X Ry L () )
dj—1y+lmnr 2 Rd gy min T\l +KJ(dj) v Ndyiddi+ K )
fo’rj =1,---,p, and
(x W ) (R By 4 (V(p+1)(Rd<p)+1""’Rm) PRy 1, Bom)

);

d(p)Jrl:m:n ? m:m:mn 1:mfd(p):n7d(p)fR( m,d(p):m,d(p):n,d(p),R(

agy)’ d(p))



where dj) = ZLO d; with do = 0, Vl(j), e ’Vd(jj')‘l‘Kj(dj) are 1id from I but doubly truncated

(p+1) ooyt y :
T;], V, ’and(p)fR(d(p)) are id from F but left-truncated at

in the interval (Tj_1,
Ty, and Kj1,--- , Kjq, (fori=1,...,d;, 5 = 1,...,p) are dependent random variables

with joint distribution similar to that stated in Theorem 4.

4 Concomitants of order statistics

Let (X1,Y7),---,(X,,Y,) be a random sample from a bivariate distribution with joint
pdf fx v, and let the marginal pdf and cdf of X be denoted by fx and Fx, respectively.

Let X1.p < -+ < Xyup be the order statistics of the X-observations and Y[y}, + , Y[
be the corresponding concomitants. For a fixed point 7', let D denote the number of X’s

that do not exceed T'. We then have the following conditional independence result.

Theorem 6. Conditional on D = d, the random vectors (Y[LR}, e 7Y[d:n}) and (Y[d+1:n}, e

Yinm)) are mutually independent with

d
(Yv[lzn}v T 7}/1d:n}) - (U[l:d}v R U[d:d}) )
d
(Y[d-‘,-l:n]’ T aY[n:n}) = (Z[lzn—d}a T aZ[n—d:n—d}) ’ (9)

where Upy.q), - -+, Ujg.q) are the concomitants of order statistics Vy.q,- -+, Va.q obtained from
a random sample (V1,Uy),- -+, (Vg,Uq) from fxy but with V'’s being right-truncated at T,
while Z[l:n—d}v e ,Z[n_d:n_d} are the concomitants of order statistics Wi.m_a,+++ s Wh_dn—d
obtained from a random sample (W1, 21),- -+ , Why—q, Zn—a) from fxy but with W's being
left-truncated at T
Proof. The conditional joint pdf of (X1.n, Y[1:n))s =+ (Xuin, Yjnin]), given D = d, is given

by

9((@1, 1), (T, yn)| D = d)
- n! TLisy fxy (@ i)
(DAEX (D)1 = Fx (T)}d

:d'Hf xz,yz Iy < <axqg<T)

I(.%'l < <axg<T < Ty <+ < .%'n)

H fXY xhyz

T P (T T <zgyr < -+ <),

i=d+1

which proves the assertion. The corresponding result for discrete X can be established in

a manner similar to those presented in the preceding sections. O
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5 Conclusions

In this paper, we have established that blocks of ordered data formed by some conditioning
events are mutually independent and we have considered for this purpose the usual order
statistics, Type-I and Type-II progressively censored order statistics, and concomitants
of order statistics. This block independence was a key property in the development of
exact conditional inferential procedures based on different forms of censored data [see
Childs et al. (2003), Balakrishnan and Iliopoulos (2008), and Balakrishnan, Han and
Iliopoulos (2008)] and also for the step-stress tests [see Balakrishnan et al. (2007) and
Balakrishnan, Xie and Kundu (2008)]. This conditional independence result has also been
implicitly present in some other results such as recurrence relations for order statistics
such as those discussed by Govindarajulu (1963) and Balakrishnan, Govindarajulu and

Balasubramanian (1993).

In closing, we would like to mention that most of the results presented here can be
stated for generalized order statistics (GOS) introduced by Kamps (1995). Recall that the
joint pdf of GOS X]. < -+ < Xjl.,n, from a parent distribution with cdf F' is given by

<H%) / / [T = w7 duy, - - dug
=1

F(x1-) Flzn—) ;24

for x1 < -+ < @y, where v1,--- ,v, > 0 and v,4+1 = 0. Set D to be the number of GOS
that do not exceed a fixed point 1. From the above integral representation, it can be
established that, conditional on D = d,

. ,Xin) and Xy = (XW ,Xﬂ:;n) are mutu-

Y, — (X7
e the random vectors X; = (X A1

1m0 "
ally independent, and

e X, 4 (W;?n—d’”' ,Wgﬁdmfd), with Y2 = (Y441, ,7n), are GOS based on F' but
left-truncated at T

Note that the conditional distribution of X 1, given D = d, can be expressed as a distribu-
tion of GOS only when v; —v;41 — 1, ¢ = 1,--- | d, are non-negative integers. This case,

in fact, corresponds to the special case of Type-II PCOS discussed in Section 3.2.
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