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Abstract

In this paper, we prove that blocks of ordered data formed by some condition-
ing events are mutually independent. We establish this result by considering the
usual order statistics, progressively censored order statistics, and concomitants of or-
der statistics.
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1 Introduction

Let X1, · · · ,Xn be independent and identically distributed (iid) random variables from

some distribution with cumulative distribution function (cdf) F , and X1:n 6 · · · 6 Xn:n

be the corresponding order statistics (OS). Properties related to conditional independence

of the ordered observations are mainly based on the Markov property. It is well-known

[see, for example, Arnold, Balakrishnan and Nagaraja (2008) and David and Nagaraja

(2003)] that when F is continuous, the ordered sample forms a Markov chain and so,

conditional on Xj:n = x, the random vectors (X1:n, · · · ,Xj−1:n) and (Xj+1:n, · · · ,Xn:n)

are independent. On the other hand, if F is discrete with support containing more than

two points, the order statistics do not form a Markov chain due to the possibility of ties

[see Nagaraja (1982)]. However, they can become Markovian by conditioning on some

suitable events; see, for example, Rüshendorf (1982) and Nagaraja (1986).

This situation is similar in the case of ordered data arising from some censoring schemes

as well. Consider, for example, progressive Type-II right censoring wherein at the times of

observed failures a pre-fixed number of surviving units are withdrawn. If the underlying

distribution is continuous, these progressively censored order statistics also form a Markov

chain; see Balakrishnan and Aggarwala (2000). This is not true in the discrete case

as shown by Balakrishnan and Dembińska (2008), but here again conditioning on some

suitable events may lead to Markovian structure.
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While deiving the exact distribution of the maximum likelihood estimator (MLE) of

the exponential mean parameter under different forms of censoring and its stochastic

monotonicity, Balakrishnan and Iliopoulos (2008) required the distribution of a function

of exponential OS that could be expressed as a discrete mixture with the value of the

mixing variable D (say) being precisely the number of the OS that are at most some

pre-fixed number T . It was observed by these authors, in this case, that conditional on

D = d, the first d OS (i.e., those that are at most T ) are independent of the rest (i.e.,

those that are larger than T ). This property results from the factorization of the joint

probability density function (pdf) of OS. It turns out that this property holds in more

general settings wherein the underlying distribution may be either continuous or discrete,

and the cut-points being more than one. Furthermore, this conditional block independence

property holds also for progressively Type-I and Type-II right censored OS as well as for

concomitants of OS and generalized OS.

The rest of this paper proceeds as follows. In Section 2, the block independence result

is presented for the case of (usual) OS. In Section 3, we extend this result for progressively

Type-I and Type-II right censored OS (PCOS). In Section 4, we show the conditional

independence of concomitants of blocked OS. Finally, some concluding remarks are made

in Section 5.

2 Usual order statistics

Let X1, · · · ,Xn be independent random variables from some distribution with cdf F and

X1:n 6 · · · 6 Xn:n be the corresponding order statistics. For some fixed T ∈ R, let

D = #{X ′s 6 T}. Then, the following theorem presents the conditional independence

result for the usual order statistics.

Theorem 1. Conditional on D = d, the vectors (X1:n, · · · ,Xd:n) and (Xd+1:n, · · · ,Xn:n)

are mutually independent with

(X1:n, · · · ,Xd:n)
d
= (V1:d, · · · , Vd:d),

(Xd+1:n, · · · ,Xn:n)
d
= (W1:n−d, · · · ,Wn−d:n−d), (1)

where V1, · · · , Vd are iid from F but right-truncated at T , and W1, · · · ,Wn−d are iid from

F but left-truncated at T .

Proof. Recall that D has the binomial distribution B(n,F (T )), irrespective of whether F

is discrete or continuous, with probability mass function (pmf)

P(D = d) =

(
n

d

)
{F (T )}d{1 − F (T )}n−d, d = 0, 1, · · · , n. (2)
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When d = 0 or n, one of the two random vectors has zero dimension and the result holds

in this case trivially. So, in what follows, we assume d ∈ {1, · · · , n − 1}.

Let us first consider the case when F is an absolutely continuous distribution with f

as the corresponding pdf. Then, the conditional joint pdf of the order statistics is given

by

g(x1, · · · , xn|D = d) =
n!

∏n
i=1 f(xi)

P(D = d)
I(x1 < · · · < xd 6 T < xd+1 < · · · < xn),

where I(A) denotes the indicator function for event A. With (2), we then have

g(x1, · · · , xn|D = d) =
n!

∏n
i=1 f(xi)

n!
d!(n−d)!{F (T )}d{1 − F (T )}n−d

×I(x1 < · · · < xd 6 T < xd+1 < · · · < xn)

=

{
d!

d∏

i=1

f(xi)

F (T )
I(x1 < · · · < xd 6 T )

}

×

{
(n − d)!

n∏

i=d+1

f(xi)

1 − F (T )
I(T < xd+1 < · · · < xn)

}

which proves the result in (1).

In the case when F is discrete, let us consider the integral representation of the joint

pmf of the order statistics given by

g(x1, · · · , xn) = n!

∫ F (x1)

F (x1−)
· · ·

∫ F (xd)

F (xd−)

∫ F (xd+1)

F (xd+1−)
· · ·

∫ F (xn)

F (xn−)
dun · · · dud+1dud · · · du1,

for x1 6 · · · 6 xn; see Arnold, Balakrishnan and Nagaraja (2008) and David and Nagaraja

(2003). Clearly, the conditional joint pmf of the order statistics, given D = d, is then

g(x1, · · · , xn|D = d) =
g(x1, · · · , xn)(n

d

)
{F (T )}d{1 − F (T )}n−d

,

for x1 6 · · · 6 xd 6 T < xd+1 6 · · · 6 xn, which in turn yields

g(x1, · · · , xn|D = d) =
d!

{F (T )}d

∫ F (x1)

F (x1−)
· · ·

∫ F (xd)

F (xd−)
dud · · · du1

×
(n − d)!

{1 − F (T )}n−d

∫ F (xd+1)

F (xd+1−)
· · ·

∫ F (xn)

F (xn−)
dun · · · dud+1.

Now, let F1(x) = F (x)
F (T ) and F2(x) = F (x)−F (T )

1−F (T ) denote, respectively, the cdf’s of the right-

and left-truncated versions of F at T . Then, by making the transformations vi = ui

F (T ) for

i = 1, · · · , d and wi = ui−F (T )
1−F (T ) for i = d + 1, · · · , n, we readily have

g(x1, · · · , xn|D = d) = d!

∫ F1(x1)

F1(x1−)
· · ·

∫ F1(xd)

F1(xd−)
dvd · · · dv1
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×(n − d)!

∫ F2(xd+1)

F2(xd+1−)
· · ·

∫ F2(xn)

F2(xn−)
dwn · · · dwd+1,

which establishes the required result.

Remark 1. In the case of absolutely continuous distributions, the result can also be viewed

from the Markovian property of order statistics. Indeed, the conditional distribution of

(X1:n, · · · ,Xd:n,Xd+1:n, · · · ,Xn:n), given D = d, is exactly the same as the conditional

distribution of (X1:n+1, · · · ,Xd:n+1,Xd+2:n+1, · · · ,Xn+1:n+1), given Xd+1:n+1 = T . In

this case, (X1:n+1, · · · ,Xd:n+1) and (Xd+2:n+1, · · · ,Xn+1:n+1) become independent and are

distributed as OS from the above stated right- and left-truncated distributions respectively.

Along the same lines, the following theorem states the conditional independence in the

case of multiple cut-points. Let −∞ ≡ T0 < T1 < · · · < Tp < ∞, and let Dj = #{X ′s ∈

(Tj−1, Tj ]}, j = 1, · · · , p. For simplicity in notation, for any vector (d1, · · · , dp), we set

d0 ≡ 0 and d(j) =
∑j

i=0 di.

Theorem 2. Conditional on (D1, · · · ,Dp) = (d1, · · · , dp), the random vectors

(X1:n, · · · ,Xd1:n), (Xd1+1:n, · · · ,Xd1+d2:n), · · · , (Xd(p)+1:n, · · · ,Xn:n)

are mutually independent with

(
Xd(j−1)+1:n, · · · ,Xd(j) :n

) d
=

(
V

(j)
1:dj

, · · · , V
(j)
dj :dj

)
for j = 1, · · · , p,

(
Xd(p)+1:n, · · · ,Xn:n

) d
=

(
V

(p+1)
1:n−d(p)

, · · · , V
(p+1)
n−d(p):n−d(p)

)
, (3)

where V
(j)
1 , · · · , V

(j)
dj

, j = 1, · · · , p, are iid from F but doubly truncated in the interval

(Tj−1, Tj ], and V
(p+1)
1 , · · · , V

(p+1)
n−d(p)

are iid from F but left-truncated at Tp.

Proof. The result in (3) follows by induction along the same lines as in the proof of

Theorem 1.

3 Progressively right censored order statistics

3.1 Type-I progressive censoring

Let X1, · · · ,Xn be a random sample from some lifetime distribution with cdf F . In Type-I

progressive right censoring, m timepoints T1 < · · · < Tm are pre-fixed, and Ri surviving

units are censored at time Ti, i = 1, · · · ,m − 1. The experiment terminates at time Tm,

at which point all the remaining Rm units are censored. The observed failures times

form the so-called Type-I progressively right censored order statistics; see, for example,

Balakrishnan and Aggarwala (2000) and Balakrishnan (2007). Clearly, there is a positive

probability that at some time Ti, i < m, less than Ri units are surviving in which case
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the experiment would simply terminate at Ti instead of at Tm. Although this set-up has

been explained from a life-testing point of view which usually involves only non-negative

random variables, these Type-I progressively right censored order statistics can clearly be

defined for discrete and/or non-positive random variables as well.

As before, let us set T0 = −∞ and Dj = #{X ′s ∈ (Tj−1, Tj ]}. Let (YD(j−1)+1, · · · , YD(j)
)

be the vector consisting of the ordered X’s falling in the interval (Tj−1, Tj ]. (Of course, in

case when Dj = D(j) − D(j−1) = 0 for some j, then the corresponding Y -vector is of zero

dimension.) Note that the random variables Y1, · · · , YD(m)
are the Type-I progressively

right censored order statistics (Type-I PCOS). Then, the following theorem establishes

the conditional block independence of Type-I PCOS.

Theorem 3. Conditional on (D1, · · · ,Dm) = (d1, · · · , dm), the random vectors

(Y1, · · · , Yd1), (Yd1+1, · · · , Yd(2)
), · · · , (Yd(m−1)+1

, · · · , Yd(m)
)

are mutually independent with

(
Yd(j−1)+1

, · · · , Yd(j)

) d
=

(
V

(j)
1:dj

, · · · , V
(j)
dj :dj

)
, (4)

where V
(j)
1 , · · · , V

(j)
dj

are iid from F but douly truncated in the interval (Tj−1, Tj ], for

j = 1, · · · ,m.

Proof. In what follows, we use the convention
(
0
j

)
= 1 when j = 0 and 0 otherwise. Then,

the joint pdf of D1, · · · ,Dm, Y1, · · · , YD(m)
is

g(d1, . . . , dm, y1, . . . , yd(m)
) =

m∏

i=1

(
max{n − d(i−1) − R(i−1), 0}

di

)

× di!

{ di∏

j=1

f(yd(i−1)+j)

}
{1 − F (Ti)}

ζi I(Ti−1 < yd(i−1)+1 6 · · · 6 yd(i)
6 Ti), (5)

for (d1, · · · , dm) ∈ D = {(d1, · · · , dm) ∈ Z
m
+ ; 0 6 di 6 max(n − d(i−1) − R(i−1), 0), i =

1, · · · ,m}, where ζi = min{Ri,max(n − d(i) − R(i−1), 0)}, i = 1, · · · ,m. Moreover, the

joint pmf of D1, · · · ,Dm is

g(d1, · · · , dm) =

m∏

i=1

(
max{n − d(i−1) − R(i−1), 0}

di

)
{F (Ti) − F (Ti−1)}

di{1 − F (Ti)}
ζi

for (d1, · · · , dm) ∈ D. Hence, for any (d1, · · · , dm) ∈ D, we obtain

g(y1, · · · , yd(m)
|d1, · · · , dm) =

g(d1, · · · , dm, y1, · · · , yd(m)
)

g(d1, · · · , dm)

=
m∏

i=1

di!

{ di∏

j=1

f(yd(i−1)+j)

F (Ti) − F (Ti−1)

}
I
(
Ti−1 < yd(i−1)+1 6 · · · 6 yd(i)

6 Ti

)
,
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which proves the assertion for the continuous case.

Next, for proving the assertion for discrete F , we can use the integral representation of

the pmf based on the probability integral transformation. More specifically, the joint pmf

of D1, · · · ,Dm, Y1, · · · , YD(m)
has the same form as in (5), but with the di-fold integral

∫ F (yd(i−1)+1)

F (yd(i−1)+1−) · · ·
∫ F (yd(i)

)

F (yd(i)
−) dudi

· · · du1 in place of
∏di

j=1 f(yd(i−1)+j). Then, upon dividing

it by the joint pmf of D1, · · · ,Dm which has the same form as before and making the

change of variables vj =
uj−F (Ti−1)

F (Ti)−F (Ti−1) , j = 1, · · · , di, for the u’s in the i-th interval, we

arrive at the required result.

Remark 2. Note that by choosing R1 = · · · = Rm−1 = 0, Theorem 3 reduces to Theorem

2. Hence, the above proof applies to that theorem as well, although a direct proof for

Theorem 2 along the lines of Theore 1 would be much simpler.

Remark 3. The above result has been used recently by Balakrishnan, Han and Iliopoulos

(2008) to establish that the sum of Type-I PCOS under exponentiality is stochastically

increasing with respect to the mean θ of the underlying exponential distribution, a property

that is essential to construct exact confidence intervals for the parameter θ.

3.2 Type-II progressive censoring

Let (X
(R1,··· ,Rm)
1:m:n , · · · ,X

(R1,··· ,Rm)
m:m:n ) be the Type-II progressively right censored order statis-

tics (Type-II PCOS) with progressive censoring scheme (R1, · · · , Rm) from some distribu-

tion with cdf F (·). Under this scheme, n iid units are placed under a life-test, and when

the first failure occurs, R1 of the n−1 surviving units are randomly withdrawn; at the time

of the next failure, R2 of the (n−2−R1) surviving units are randomly withdrawn, and so

on; finally, at the time of the m-th failure, all the surviving Rm units are withdrawn. The

m failure times that are observed in this manner, denoted by X
(R1,··· ,Rm)
1:m:n , · · · ,X

(R1,··· ,Rm)
m:m:n ,

are referred to as Type-II progressively right censored order statistics (Type-II PCOS).

For a fixed point T , let D denote the number of Type-II PCOS that do not exceed T . We

then have the following conditional independence result for these Type-II PCOS.

Theorem 4. Conditional on D = d, the random vectors (X
(R1,··· ,Rm)
1:m:n , · · · ,X

(R1,··· ,Rm)
d:m:n )

and (X
(R1,··· ,Rm)
d+1:m:n , · · · ,X

(R1,··· ,Rm)
m:m:n ) are mutually independent with

(
X

(R1,··· ,Rm)
1:m:n , · · · ,X

(R1,··· ,Rm)
d:m:n

) d
=

(
V

(K1,··· ,Kd)
1:d:d+K(d)

, · · · , V
(K1,··· ,Kd)
d:d:d+K(d)

)
,

(
X

(R1,··· ,Rm)
d+1:m:n , · · · ,X(R1,··· ,Rm)

m:m:n

) d
=

(
W

(Rd+1,··· ,Rm)
1:m−d:n−d−R(d)

, · · · ,W
(Rd+1,··· ,Rm)
m−d:m−d:n−d−R(d)

)
, (6)

where V1, · · · , Vd+K(d)
are iid from F but right-truncated at T , W1, · · · ,Wn−d−R(d)

are iid

from F but left-truncated at T , R(d) =
∑d

i=1 Ri, K(d) =
∑d

i=1 Ki, and (K1, · · · ,Kd) have

joint pmf
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p(k1, · · · , kd) =

[
d∑

k=0

(−1)k{1 − F (T )}
∑d

i=d−k+1(1+Ri)

{∏d−k
j=1

∑d−k
i=j (1 + Ri)

}{∏d
j=d−k+1

∑j
i=d−k+1(1 + Ri)

}
]
−1

×
d∏

i=1

1
∑d

j=i(1 + kj)

(
Ri

ki

)
F (T )ki+1{1 − F (T )}Ri−ki

for 0 6 ki 6 Ri, i = 1, · · · , d.

Proof. First, let us consider the case when F is a continuous distribution. Recall that the

joint pdf of the PCOS is

f(x1, · · · , xm) =

{ m∏

i=1

m∑

j=i

(1 + Rj)

} m∏

i=1

f(xi){1 − F (xi)}
Ri I(x1 < · · · < xm).

Conditional on D = d, the joint pdf remains proportional to the above quantity, and so

the independence result follows immediately since the joint pdf factors into two terms

corresponding to the two blocks.

For deriving the conditional distributions, conditional on D = d, we start with the pmf

of D given by [see Xie, Balakrishnan and Han (2008)]

P(D = d) =

d∑

k=0

(−1)k{1 − F (T )}
∑m

i=d−k+1(1+Ri)
∏d

j=1

∑m
i=j(1 + Ri)

{∏d−k
j=1

∑d−k
i=j (1 + Ri)

}{∏d
j=d−k+1

∑j
i=d−k+1(1 + Ri)

} , d = 0, 1, · · · ,m.

(7)

The conditional pdf of PCOS, given D = d, is clearly

f(x1, · · · , xm|D = d) =
f(x1, . . . , xm)

P(D = d)
I(x1 < · · · 6 T < xd+1 < · · · < xm).

Observe now that for x1 < · · · < xd 6 T < xd+1 < · · · < xm, f(x1, · · · , xm) equals

{ d∏

i=1

m∑

j=i

(1 + Rj)

d∏

i=1

f(xi){1 − F (xi)}
Ri

}{ m∏

i=d+1

m∑

j=i

(1 + Rj)

m∏

i=d+1

f(xi){1 − F (xi)}
Ri

}

=

{ d∏

i=1

m∑

j=i

(1 + Rj)
d∏

i=1

f(xi)

Ri∑

ki=0

(
Ri

ki

)
{F (T ) − F (xi)}

ki{1 − F (T )}Ri−ki

}

× {1 − F (T )}
∑m

i=d+1(1+Ri)

{ m∏

i=d+1

m∑

j=i

(1 + Rj)

m∏

i=d+1

f(xi)

1 − F (T )

{
1 − F (xi)

1 − F (T )

}Ri
}

=

{ d∏

i=1

m∑

j=i

(1 + Rj)

}
{1 − F (T )}

∑m
i=d+1(1+Ri)

×

{ d∏

i=1

Ri∑

ki=0

(
Ri

ki

)
F (T )ki+1{1 − F (T )}Ri−ki

f(xi)

F (T )

{
F (T ) − F (xi)

F (T )

}ki
}

×

{ m∏

i=d+1

m∑

j=i

(1 + Rj)
m∏

i=d+1

f(xi)

1 − F (T )

{
1 − F (xi)

1 − F (T )

}Ri
}
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=

{ d∏

i=1

m∑

j=i

(1 + Rj)

}
{1 − F (T )}

∑m
i=d+1(1+Ri)

×

{ R1∑

k1=0

· · ·

Rd∑

kd=0

[ d∏

i=1

(
Ri

ki

)
F (T )ki+1{1 − F (T )}Ri−ki

∑d
j=i(1 + kj)

]

×

[{ d∏

i=1

d∑

j=i

(1 + kj)

} d∏

i=1

f(xi)

F (T )

{
F (T ) − F (xi)

F (T )

}ki
]}

×

{ m∏

i=d+1

m∑

j=i

(1 + Rj)
m∏

i=d+1

f(xi)

1 − F (T )

{
1 − F (xi)

1 − F (T )

}Ri
}

.

This expression reveals that the conditional distributions of the two blocks are as stated

in (6). Next, in order to obtain the joint pmf of K1, · · · ,Km, we have to divide the above

expression by P(D = d) given in (7) and then integrate out the PCOS. If this is carried

out, it can be seen that their joint pmf is as stated in the theorem.

In the case of discrete F , consider the integral representation given by Balakrishnan

and Dembińska (2008),

g(x1, · · · , xm) ∝

∫ F (x1)

F (x1−)
· · ·

∫ F (xm)

F (xm−)

m∏

i=1

(1 − ui)
Ridum · · · du1

for x1 6 · · · 6 xm. The conditional joint pdf of the Type-II PCOS, given D = d, is also

proportional to the above quantity, i.e.,

g(x1, · · · , xm|D = d) ∝

∫ F (x1)

F (x1−)
· · ·

∫ F (xd)

F (xd−)

d∏

i=1

(1 − ui)
Ridud · · · du1

×

∫ F (xd+1)

F (xd+1−)
· · ·

∫ F (xm)

F (xm−)

m∏

i=d+1

(1 − ui)
Ridum · · · dud+1,

for x1 6 · · · 6 xd 6 T < xd+1 6 · · · 6 xm. As done in the proof of Theorem 1,

upon making the transformations vi = ui

F (T ) for i = 1, · · · , d, and wi = ui−F (T )
1−F (T ) for

i = d + 1, · · · ,m, we obtain

g(x1, · · · , xm|D = d) ∝

∫ F1(x1)

F1(x1−)
· · ·

∫ F1(xd)

F1(xd−)

d∏

i=1

{1 − F (T )vi}
Ridvd · · · dv1

×

∫ F2(xd+1)

F2(xd+1−)
· · ·

∫ F2(xm)

F2(xm−)

m∏

i=d+1

{1 − F (T ) − [1 − F (T )]wi}
Ridwn · · · dwd+1,

where, as before, F1(x) = F (x)
F (T ) , 0 < x ≤ T, and F2(x) = F (x)−F (T )

1−F (T ) , T < x. Upon writing

{1 − F (T ) − [1 − F (T )]wi}
Ri = {1 − F (T )}Ri(1 − wi)

Ri and

{1 − F (T )vi}
Ri = {1 − F (T ) + F (T )(1 − vi)}

Ri

8



=

Ri∑

ki=0

(
Ri

ki

)
{F (T )}ki{1 − F (T )}Ri−ki(1 − vi)

ki ,

we obtain the result.

Remark 4. Observe that the conditional distribution of
(
X

(R1,··· ,Rm)
1:m:n , · · · ,X

(R1,··· ,Rm)
d:m:n

)

is the same as the distribution of Type-II PCOS from a sample of random size from F

but right truncated at T , with a random progressive censoring scheme as well. It is well-

known that right truncation of PCOS does not result in PCOS from the corresponding

right-truncated distribution [see, for example, Balakrishnan and Aggarwala (2000)] due

to the fact that the observations censored before T could have their values to be larger

than T . However, their distribution can be expressed as a (multivariate) mixture: Ki

represents the (random) number of random variables having their values to be at most T

among the Ri observations that are censored at Xi:m:n.

Remark 5. As in the case of usual OS, in the continuous case, this result can also be

established from the Markovian property of the Type-II PCOS. Moreover, by Theorem 3.1

of Bairamov and Özkal (2007), when R1 = · · · = Rm the PCOS have the same distribution

as the usual OS from the distribution with cdf G(x) = 1−(1−F (x))n/m. So, in this special

case the result follows directly from Theorem 1.

The result in Theorem 4 can also be generalized to multiple cut-points as follows.

Theorem 5. Let X1, · · · ,Xn be iid random variables from some distribution with cdf F

and
(
X

(R1,··· ,Rm)
1:m:n , · · · ,X

(R1,··· ,Rm)
m:m:n

)
be the Type-II PCOS with progressive censoring scheme

(R1, · · · , Rm). Let −∞ ≡ T0 < T1 < · · · < Tp < ∞ be the cut-points and Dj be the number

of Type-II PCOS that lie in the interval (Tj−1, Tj ] for j = 1, · · · , p. Then, conditional on

(D1, · · · ,Dp) = (d1, · · · , dp), the random vectors

(
X

(R1,··· ,Rm)
1:m:n , · · · ,X

(R1,··· ,Rm)
d1:m:n

)
,

(
X

(R1,··· ,Rm)
d1+1:m:n , · · · ,X

(R1,··· ,Rm)
d1+d2:m:n

)
,

...
(
X

(R1,··· ,Rm)
d(p)+1:m:n , · · · ,X(R1,··· ,Rm)

m:m:n

)
(8)

are mutually independent with

(
X

(R1,··· ,Rm)
d(j−1)+1:m:n, · · · ,X

(R1,··· ,Rm)
d(j):m:n

) d
=

(
V

(j)(Kj1,··· ,Kjdj
)

1:dj :dj+Kj(dj)
, · · · , V

(j)(Kj1,··· ,Kjdj
)

dj :dj :dj+Kj(dj)

)

for j = 1, · · · , p, and

(
X

(R1,··· ,Rm)
d(p)+1:m:n , · · · ,X(R1,··· ,Rm)

m:m:n

) d
=

(
V

(p+1)(Rd(p)+1,··· ,Rm)

1:m−d(p):n−d(p)−R(d(p))
, · · · , V

(p+1)(Rd(p)+1,··· ,Rm)

m−d(p) :m−d(p):n−d(p)−R(d(p))

)
,
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where d(j) =
∑j

i=0 di with d0 ≡ 0, V
(j)
1 , · · · , V

(j)
dj+Kj(dj)

are iid from F but doubly truncated

in the interval (Tj−1, Tj ], V
(p+1)
1 , · · · , V

(p+1)
n−d(p)−R(d(p))

are iid from F but left-truncated at

Tp, and Kj1, · · · ,Kjdj
(for i = 1, . . . , dj , j = 1, . . . , p) are dependent random variables

with joint distribution similar to that stated in Theorem 4.

4 Concomitants of order statistics

Let (X1, Y1), · · · , (Xn, Yn) be a random sample from a bivariate distribution with joint

pdf fX,Y , and let the marginal pdf and cdf of X be denoted by fX and FX , respectively.

Let X1:n 6 · · · 6 Xn:n be the order statistics of the X-observations and Y[1:n], · · · , Y[n:n]

be the corresponding concomitants. For a fixed point T , let D denote the number of X’s

that do not exceed T . We then have the following conditional independence result.

Theorem 6. Conditional on D = d, the random vectors (Y[1:n], · · · , Y[d:n]) and (Y[d+1:n], · · · ,

Y[n:n]) are mutually independent with

(
Y[1:n], · · · , Y[d:n]

) d
=

(
U[1:d], · · · , U[d:d]

)
,

(
Y[d+1:n], · · · , Y[n:n]

) d
=

(
Z[1:n−d], · · · , Z[n−d:n−d]

)
, (9)

where U[1:d], · · · , U[d:d] are the concomitants of order statistics V1:d, · · · , Vd:d obtained from

a random sample (V1, U1), · · · , (Vd, Ud) from fX,Y but with V ’s being right-truncated at T ,

while Z[1:n−d], · · · , Z[n−d:n−d] are the concomitants of order statistics W1:n−d, · · · ,Wn−d:n−d

obtained from a random sample (W1, Z1), · · · , (Wn−d, Zn−d) from fX,Y but with W ’s being

left-truncated at T .

Proof. The conditional joint pdf of (X1:n, Y[1:n]), · · · , (Xn:n, Y[n:n]), given D = d, is given

by

g((x1, y1), . . . ,(xn, yn)|D = d)

=
n!

∏n
i=1 fX,Y (xi, yi)(n

d

)
{FX (T )}d{1 − FX(T )}n−d

I(x1 < · · · < xd 6 T < xd+1 < · · · < xn)

= d!
d∏

i=1

fX,Y (xi, yi)

FX(T )
I(x1 < · · · < xd 6 T )

× (n − d)!
n∏

i=d+1

fX,Y (xi, yi)

1 − FX(T )
I(T < xd+1 < · · · < xn),

which proves the assertion. The corresponding result for discrete X can be established in

a manner similar to those presented in the preceding sections.
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5 Conclusions

In this paper, we have established that blocks of ordered data formed by some conditioning

events are mutually independent and we have considered for this purpose the usual order

statistics, Type-I and Type-II progressively censored order statistics, and concomitants

of order statistics. This block independence was a key property in the development of

exact conditional inferential procedures based on different forms of censored data [see

Childs et al. (2003), Balakrishnan and Iliopoulos (2008), and Balakrishnan, Han and

Iliopoulos (2008)] and also for the step-stress tests [see Balakrishnan et al. (2007) and

Balakrishnan, Xie and Kundu (2008)]. This conditional independence result has also been

implicitly present in some other results such as recurrence relations for order statistics

such as those discussed by Govindarajulu (1963) and Balakrishnan, Govindarajulu and

Balasubramanian (1993).

In closing, we would like to mention that most of the results presented here can be

stated for generalized order statistics (GOS) introduced by Kamps (1995). Recall that the

joint pdf of GOS X
γ̃
1:n 6 · · · 6 X

γ̃
n:n from a parent distribution with cdf F is given by

( n∏

i=1

γi

)∫ F (x1)

F (x1−)
· · ·

∫ F (xn)

F (xn−)

n∏

i=1

(1 − ui)
γi−γi+1−1dun · · · du1

for x1 6 · · · 6 xn, where γ1, · · · , γn > 0 and γn+1 ≡ 0. Set D to be the number of GOS

that do not exceed a fixed point T . From the above integral representation, it can be

established that, conditional on D = d,

• the random vectors X̃1 = (X γ̃
1:n, · · · ,X

γ̃
d:n) and X̃2 = (X γ̃

d+1:n, · · · ,X
γ̃
n:n) are mutu-

ally independent, and

• X̃2
d
= (W γ̃2

1:n−d, · · · ,W
γ̃2

n−d:n−d), with γ̃2 = (γd+1, · · · , γn), are GOS based on F but

left-truncated at T .

Note that the conditional distribution of X̃1, given D = d, can be expressed as a distribu-

tion of GOS only when γi − γi+1 − 1, i = 1, · · · , d, are non-negative integers. This case,

in fact, corresponds to the special case of Type-II PCOS discussed in Section 3.2.
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