Variance reduction of estimators arising from
Metropolis-Hastings algorithms

George Iliopoulos* Sonia Malefakif

Abstract

The Metropolis—Hastings algorithm is one of the most basic and well-studied Markov
chain Monte Carlo methods. It generates a Markov chain which has as limit distribution
the target distribution by simulating observations from a different proposal distribution. A
proposed value is accepted with some particular probability otherwise the previous value is
repeated. As a consequence, the accepted values are repeated a positive number of times and
thus any resulting ergodic mean is, in fact, a weighted average. It turns out that this weighted
average is an importance sampling-type estimator with random weights. By the standard
theory of importance sampling, replacement of these random weights by their (conditional)
expectations leads to more efficient estimators. In this paper we study the estimator arising
by replacing the random weights with certain estimators of their conditional expectations.
We illustrate by simulations that it is often more efficient than the original estimator while
in the case of the independence Metropolis—Hastings and for distributions with finite support
we formally prove that it is even better than the “optimal” importance sampling estimator.

Key words and phrases: Metropolis—Hastings algorithm, importance sampling, weighted es-

timators, variance reduction.

1 Introduction

The last decades Markov chain Monte Carlo (MCMC) algorithms have become very popular
and widely used tools in Computational Statistics as a way of sampling from complex multidi-
mensional probability distributions. The most basic MCMC method is the Metropolis—Hastings
(MH) algorithm which generates a Markov chain with limit distribution the target distribu-
tion by drawing observations from a proposal distribution (cf. Metropolis et al., 1953, Hastings,
1970). A proposed value is accepted with a certain probability otherwise the previous accepted
value is repeated. As a consequence, the accepted values are repeated a positive number of

times. Thus, a positive weight corresponds to any accepted value.

To be formal, let m be the density of the target distribution with respect to some underlying

measure i and ¢ be another distribution with at least the same support as 7. The MH algorithm
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with proposal distribution ¢ generates a Markov chain Y = (Y;)icz. (Z4 ={0,1,2,...}) through
the following transition. It starts from some (either deterministic or randomly chosen) state yg

in the support of 7 and at time ¢ + 1, given Y; = y, proposes z ~ ¢(z|y) and sets

z, with probability a(y, 2)
Yip1 = . .
y, with probability 1 — a(y, 2),

e CTIEN
"l |

oty 2) =min {1, T

It is well-known that the generated Markov chain Y is reversible with limit distribution .
Malefaki and Iliopoulos (2008, Section 3) studied Y from a different perspective. More specifi-
cally, they considered Y as a discrete time Markov jump process with embedded Markov chain

the sequence of accepted states and sojourn times the corresponding number of repetitions.

Let X = (X,)nez, be the sequence of accepted states and & = (&,)nez, be their corre-
sponding numbers of appearances in Y. This means that X; is repeated & times in Y until
the acceptance of the next stated X;y;. The results of Malefaki and Iliopoulos (2008) can be
collected in the following proposition (see also Douc and Robert, 2011).

Proposition 1. (a) The conditional distribution of &, given X, = x, is geometric with proba-

bility of success [ a(zy,z)q(z|zn)u(dz), ie.,

—1
(lzn) = { [ alzn, 2)q(zlan)p(d2) } {1 = [a(zn, 2 (z|xn),u(dz)}§ ,E=1,2,....
(b) The sequence X = (Xy)nez, is a Markov chain with transition density

a(Tn—1,Tn)q(Tn|Trn 1) _ min{7(z,—1)q(Tn|Tn-1), 7(T0)q(Tn-1|T0)}

Ja(@n-1,2)q(zlen-1)p(dz) [ min{m(zn_1)q(zlen-1), 7(2)q(zn-1|2)}u(dz)’

(¢c) The Markov chain X = (X, )necz, is reversible with stationary distribution

g(xnkcnfl) =

OC/rnin{?f(?ﬂ)(z(zrlﬂc), (2)q([2) }u(dz). (1)

(d) The sequence (Xp,&n)nez, is properly weighted with respect to w, i.e., E(§|X; = x) =
rw(z), where w(z) = w(z)/g(z) and k = ([[ min{r(z)q(z|z), 7(2)q(z|2)}u(dz)pu(dz)) s the

normalizing constant of g.

Let Yy, Y1,... YT be the sequence generated from the MH algorithm. Then, the standard

estimator of E;(h) = [ h(z p(dz) is the ergodic mean

. 1 Z
Py = th(Yt).



In practice, the estimate is evaluated after discarding a certain part of the first Y-values that
corresponds to the burn-in period. If this is the case, denote by Y7 the first value after that

period. Note that an alternative expression for the above estimator is

i = %{ g&h(xi) + (T — ;§i>h(Xn+1)}.

Here n = n(T) is the largest integer for which 7" > >~ | &. Note that an alternative estimator
of E;(h) that takes into account only the first n states is
iLMH _ 2ic1 5ih(Xz‘).
Z:‘L:1 fz
Part (d) of Proposition 1 suggests that if the evaluation of w(z) is possible, another estimator

of Er(h) can be

(2)

his = > i W(XG)h(X5)
Z?Zl w(XZ) :

In fact, h 15 is more efficient than h mu- This has been realized by Malefaki and Iliopoulos (2008)

who have shown that if
n'2{hss — Ex(h)} -5 N(0,02¢(h)) with o2g < oo,

then
02 {har — Ex(h)} 5 N(0, 03,5 (h)),

where
FRra(h) = o3s(h) + — B, [Var(e X){h(X) — B (W] Q

In the proof of Theorem 2 of Douc and Robert (2011) it is shown that n/T —= E,(w) € (0,00)
and T-1/2(T — Yo &) 2, 0as T — oo. This implies that the asymptotic distributions of
nY2{hprir — Ex(h)} and nl/Q{fL}‘VIH — Ex(h)} coincide. Due to this asymptotic equivalence, in
the sequel we will consider h v as the MH estimator instead of il}k\/[ g7~ Moreover, since overall it
does not matter whether n is random or fixed, whenever it is convenient (as in the presentation

of our result) we will assume it to be fixed so that T'=>"" , &.

Note that hsg is actually a standard importance sampling (IS) estimator with the only dif-
ference that it is produced by a Markov chain with limit distribution g rather than direct iid
sampling from g. Hence, it is justified to refer to w(x)’s as “importance weights”. Unfortu-
nately, w(z) cannot be evaluated except for some toy examples as those presented in Section
3. Therefore, Malefaki and Iliopoulos (2008) suggested to estimate the importance weights and
plug their estimates into hrs. They further illustrated by simulations that the resulting esti-

mator, hy, say, behaves well and in some cases almost the same as h;g. In this paper we move



one step further and show that ilw is often more efficient not only than fLMH but than fug as
well. This is formally proven in the case of independence MH (IMH), i.e., when ¢(z|y) = q(2),
and finite state space. However, simulations indicate that for the IMH this holds for continuous

state space as well.

In the literature there are several approaches to improve on B By considering the above
point of view, Douc and Robert (2011) replaced the geometric distributed weights &1, ..., &,
by some other (also random) weights &1,...,&, in such a way that E(&]X;) = E(&|X;) and
Var(&)X;) < Var(&|X;). The resulting estimator is more efficient than hyrg due to (3). Alter-
native methods for improving MH estimators based on Rao—Blackwellization have been presented
by Casella and Roberts (1996) and Atchadé and Perron (2005). However, their evaluation re-
quires high computational cost and therefore makes them practically useless. As Atchadé and

Perron (2005) say,

“... if we take into account how time consuming is the Rao—Blackwellization for

large values of n, it is better to increase the sample size than to perform Rao—

Blackwellization when we want to reduce the variance in case n is large ...”

Recently, a different approach is used by Jacob et al. (2011) in the special case of IMH algorithm.
These authors run blocks of several IMH algorithms which share permutations of the same
proposed values. The resulting estimator is a weighted average of all of them with corresponding

weights their total number of appearances and is more efficient than hoac.

The rest of the paper is organized as follows. In Section 2, we review the approach of
Malefaki and Iliopoulos (2008) and state our theoretical result. We also describe an algorithm
for the efficient calculation of our importance weights’ estimates in the special case of IMH. In
Section 3 we give some illustrative toy examples as well as a real data example. Moreover, we
compare by simulation the performance of our estimator with those of Douc and Robert (2011)
and Jacob et al. (2011). Section 4 contains a brief discussion. The paper concludes with an

appendix containing the proof of our result.

2 Estimation of the importance weights and main result

Using the definition of the distribution ¢ in (1) and its normalizing constant x we get that

{ruw(x)} ! = / a(z, 2)q(z|2)u(dz)




Thus, the inverse of importance weights is, in fact, an expectation with respect to the target
distribution 7. Hence, they can be estimated using the original MH sequence Y. Since 1/w(zx) #
0 for all x, for each fixed x the estimator
R(2) = =5 - Z;l =14
1 & min{q(Xjlx) /m(X;), q(z|X;) /m(x)}

converges almost surely to kw(x). So, the idea of Malefaki and Iliopoulos (2008) is as follows:

(4)

Use w(X;) in the place of the importance weights w(X;) and estimate E.(h) with

i s W(X)h(Xy)
B = - .
> oic1 W(X5)
Note here that the weight w(X;) is a function of all (Xj,&)1<i<n and not only of X;. This

causes a problem, since the asymptotic properties of hg are not straightforward. In particular,
it is not even clear whether fLw converges, in general, to E.(h). Moreover, if this is the case and
if further n'/2{hy — E.(h)} 4, N(0,02%(h)) holds, then the variance 2% (h) does not have an

expression similar to (3).

We have run extensive simulations and all of them suggest that ha converges indeed to
E;(h). Moreover, there are cases where fLw is more efficient not only than fLMH but also than
the “optimal estimator” hrg. These facts are stated in the following theorem for the special case

of finite state space.

Theorem 1. If the state space is finite:

(a) The estimator hg converges to Ex(h) almost surely.

(b) n'/2{hg — Ex(h)} -5 N(0,02(h)), where

E[w(Xl){h(X1) - Eﬂ(h)HXOf }
rw(Xo) '

(¢) In the case of IMH it holds o2 (h) < o7g(h) and thus, o2 < o3, (h).

02 (h) = Vary{w(Xo)h(Xo)} — E{

The (rather lengthy) proof of Theorem 1 can be found in the Appendix.

One may argue against the practical usefulness of the estimator hg due to the extra com-
putational cost needed for the estimation of the weights. There are some tricks one could
use in order to reduce the computation time. Malefaki and Iliopoulos (2008) defined the sets
Ay = {z:m(x)q(z|z) < 7(2)q(x|z)}, and expressed the estimate of kKw(x;) as

K (z;) = 25]/{ ZSJ :ﬂ;m xj € Ay,) + Z@q xilx;)(x; € A;Z)}

Jj=1

In several examples, the sets A, have a simple form, so obtammg the estimates is not too
time consuming. In particular, the calculation of the weights’ estimates can be considerebly

accelerated in the special case of IMH by using the following procedure.



Algorithm 1. (Calculation of W for IMH)

Given the IMH output (z;, & )1<i<n:

Step 0: Sort r; = q(z;)/7(x;), i = 1,...,n, in ascending order. Let r() < --- < 7(p)
be the corresponding ordered values and denote also z(;), ;) the values of z and & that

correspond to 7 ;.
Step 1: Set C; =0, Cy = (1) Z?:l fj and mi)(x(l)) = Z?:l 5]/(01 + Cy).

Step i, for i = 2, N S Update Cl = Cl + f(z;l)?“(ifl), CQ = (CQ - E(i,l)r(i,l))r(i)/r(i,l),
and set mi)(x(l)) = Z?:l fj/(Cl + Cy).

Algorithm 1 delivers the estimated weights very quickly. Given that the ratios r; have been
already calculated in the original MH run since they are needed for the acceptance probabilities,
the most heavy part of the algorithm becomes the sorting procedure. Nervertheless, in all of the
examples we have run, the additional time for the weights’ estimation was very short compared
to the time needed for the IMH run. Unfortunately, for other MH algorithms this is not the case
because most of the ratios q(xj|x;)/m(x;) are not available from the original run. This makes the
weights’ estimation procedure slow and so the possible gain in variance can be counterbalanced

by increasing the length of the MH chain.

3 Examples

The examples in this section illustrate the performance of our estimator compared with harp and
hrg in terms of asymptotic variance. In our simulations we have included the estimator hor pro-
posed by Douc and Robert (2011), the asymptotic variance of which is known to lie between those
of the above estimators. In all of the examples we ran independently m = 200 chains of length
T = 10000 and we recorded the corresponding estimators of E;(X) and E.(X?). (For the real
data example in Subsection 3.4 we used m = 500 chains.) All simulations have been programmed
in Fortran 95 and run on a 2.4 GHz Intel Core 2 Processor with 2 GB RAM. The variances
comparison of any two estimators is made as follows. Denote by (ﬁgl), iL(Ql)), . (ﬁgm) , iL(Qm)) the
m realizations of the estimators ill, iLQ, where each pair corresponds to the same chain. It is
easy to see that Var(le) > Var(ﬁg) if and only if hi + hy and hy — hs are positively correlated.
So, in order to compare the variances we consider the transformed pairs (ﬁgj ) + ﬁgj ), ﬁgj ) _ ﬁgj )),

j=1,...,m, and test the one-sided significance of their sample correlation coefficient.



0 h(m) OMH ODR 018 O n 718w Z(’I“)

0.1 =« 0349 .0325 .0304 .0218  1813.8  .7777 14.6
x? 1242 1147 1096 .0728 8119 15.9
0.5 = 0149 .0144 .0141 .0119  6670.3  .9014 20.8
x? 0569 .0561 .0557 .0478 8747 19.0
0.9 =« 0108 .0106 .0106 .0103  9471.8  .9614 27.6
z? 0455 .0450 .0450 .0441 8121 15.9

Table 1: (Example 3.1) Estimated standard errors of the four estimators of the first and second
moment of the target distribution 7(z) = e™*, 2 > 0, with proposal distribution q(z) = e,
x > 0, based on m = 200 independent runs. The columns labelled g 4 and z(r) show the sample
correlation coefficient for testing J%S > J%D and the corresponding Fisher’s z-value, respectively.

3.1 Independence Metropolis—Hastings: Exponential target distribution

Consider the IMH algorithm with target distribution m(x) = e™*, x > 0, and proposal ¢(z|z) =
q(z) = e %%, 2 > 0, with < 1. In this case it can be shown that g(z) oc e 20+ (0 — 1 4 €07),
x> 0, and thus, w(z) = 7n(x)/g(z) = {790 — 14 )} 71, 2 > 0. Tt can be easily seen that
in this example it holds A, = (0, z] and that the ordering of r;’s is the same as that of z;’s. So,

the estimates of the weights become

n i—1 n
,ﬂ[)(x(l.)) = Z fj/{ Zg(j)e(lfG)z(j) + 1=z ;) Z f(j)}’ i=1,...,n,
7j=1 7j=1 Jj=t

where z(1) < -+ < () are the ordered x values and §(1), ..., &) their corresponding weights.

We considered three values of 6, namely, 0.1, 0.5 and 0.9. Note that as 6 increases, the
proposal distribution gets closer to the target distribution. The estimated standard errors of
the estimators are presented in Table 1 together with the average length, n, of the accepted
states sequence. As expected, the “estimator” 7113 is more efficient than ilMH while EDR lies
in between. On the other hand, the standard error of our estimator, ilw, is smaller not only
than those of h v and fLD r but of h 15 as well. The high significance of the sample correlation
coefficients described in the beginning of the section confirms that in all cases of Table 1 it holds
J%S > U?b. Indeed, the corresponding Fisher’s z transforms (which are supposed to come from
a standard normal distribution when the population correlation coefficient equals zero) imply
that all p-values are practically zero. Note that this agrees with Theorem 1, although here the

state space is continuous.

As mentioned in the Introduction, Jacob et al. (2011) proposed a new method in order to

improve estimation in the case of independence MH. It is based on a different idea in that many



hyrs(20,500)  hyrs(100,100)  hyrs(1000,10) h

0 h(z) 6rs CPU  65rs CPU 6555 CPU 65  CPU
01 0156 1.144 0181 .2186 .0232 .0225  .0218 .0031
2?0414 (.0469) .0487 (.0405) .0775 (.0078)  .0728 (.0062)
x 0093 1075 .0087 2116 .0098 .0208  .0119 .0045
22 0290 (.0102) .0268 (.0088) .0310 (.0073)  .0478 (.0070)
09 =z 0098 .9474  .0094 1769 .0085 .0184  .0103  .0051
22 0375 (.0262) .0378 (.0078) .0346 (.0064)  .0441 (.0073)

Table 2: (Example 3.1) Estimated standard errors of h JRrs for selected (b,p)’s and mean CPU
times along with their standard deviations based on m = 200 independent runs. The last two
columns contain the corresponding results for A .

parallel sequences sharing the same proposals are simulated rather than a single Markov chain.
More specifically, in the beginning the 7" independent proposals are split into b blocks of length
p (so that T' = bp). For each block p random permutations of the particular proposals are
considered and the corresponding MH sequences of length p are simulated. As soon as the block
is finished, one among the last states of the p sequences is randomly selected and it is used as
starting point for the p sequences of the next block. Finally, the estimator of E(h), h Jrs(b,p)

say, averages over all bp? simulated values.

In order to compare their approach with ours we consider both the standard errors of es-
timators and the CPU time needed to obtain them. As we can see in Table 2, 6 rg is in
almost all cases less than 5 with the largest improvement being about 44% (for 6 = 0.1 and
(b,p) = (20,500)). However, when p is small and the proposal is far from the target distribution
we may get 0 jrs > 0. In general, the larger the value of p the higher the improvement. Note
though that in all of the examples we ran, the improvement in standard error was never more
than 50%. On the other hand, the CPU times needed for the method of Jacob et al. (2011) are
considerably greater than ours even for small p. For instance, in the case of the above men-
tioned largest standard error improvement, the CPU time was over 350 times higher. In fact,
the simulations showed that the CPU time is roughly linear in p. This is not surprising since
the method repeats the MH procedure p times. Given the small standard error improvement
of h Jrs and the huge difference in CPU times, it is clear that one can simulate a single MH

sequence with larger T in order to make hyg more efficient and still keep the required time lower.



0  h(z) OMH  ODR 015 o n rrsa 2(r)

1.5 T .01231 .01136 .01123 .01123 7488.2 0182 0.26
z? .01831 .01810 .01730 .01520 9306 23.3
5.0 T 02375 .02161 .01827 .01826 2508.8 0294 0.41
x? 03690 .03374 .03012 .02283 7418 134
10.0 T 03537 .03394 .02481 .02469 1267.8 1679 2.38
x? 05604 .05352 .04516 .03218 7865 14.9

Table 3: (Example 3.2) Estimated standard errors of the four estimators of the first and second
moment of the target distribution 7(z) e=®/2 z € R,, with proposal distribution q(z)
e~/ 292, z € R, based on m = 200 independent runs. The columns labelled 775 and z(r) show
the sample correlation coefficient for testing J%S > J%D and the corresponding Fisher’s z-value,
respectively.

3.2 Independence Metropolis—Hastings: Normal target distribution

Consider the IMH algorithm with target distribution m(x) oc e~/ 2.z € R, and proposal
distribution ¢(z) o e #*/2%*| z € R, with > 1. It can be verified that in this example the limit

distribution of the accepted states has density

g(z) o /min{w(m)q(z),w(z)q(;g)}M(dz)
B / min{e /2720 =/ 20 g

oc 0120 (|z]/0) — 1)e™™/? + 20 (—|z])e /2",

where ® denotes the cdf of the standard normal distribution, and that A, = [—|z|, |z|].

We considered several values of 6 and repeated the procedure of Example 3.1. The estimated
standard errors of the four estimators are presented in Table 3. We can see that their ordering
is the same as before. Note that the insignificance of the sample correlation coefficients used to
test for 074 > 02 in the case of estimating Er(X) is due to the small number m of independent
chains. We increased m and concluded that it must be at least 10000 so that r;g 4 to become
significant. This means that the standard error of hg is indeed smaller but the difference
is marginal. We also mention that the comparison of our method with the one of Jacob et

al. (2011) gave analogous results with Example 3.1 which are not presented here for brevity.



0  h(z) OMH  ODR 015 o n rrsa 2(r)

1.5 x .02284 .02206 .02119 .01150  5900.9 8631 18.3
x? 03137 .02998 .02898 .01782 8364 17.0
5.0 T 02397 .02330 .01913 .01802 2426.9 6292 104
z? 04022 .03893 .03506 .02614 8057 15.6
10.0 T 03570 .03506 .02745 .02702 1257.6 4163 6.2
x? 05869 .05210 .04652 .03391 7T 14.6

Table 4: (Example 3.3) Estimated standard errors of the four estimators of the first and second
moment of the target distribution m(x) o e~®/2 2 € R, with proposal distribution q(z|z) o
_(Z_“”)Q/%Q, z € R, based on m = 200 independent runs. The columns labelled ;g and z(r)

12@ and the corresponding Fisher’s

e
show the sample correlation coefficient for testing O'%S > o
z-value, respectively.

3.3 Random walk Metropolis—Hastings: Normal target distribution

Let m(x) o e=®/2 € R, and q(z|z) x e—(z=2)?/20* , c R Then, the sequence of the accepted

states of the corresponding MH algorithm has limit distribution

g(x) o /min {m(@)q(z|z), m(2)q(z|2)} p(dz)

> /min{er/Q(Zx)g/zoz,ezg/z(fEZ)Q/QGQ}dz

a2 (02 + 2)|z| 0|x| Ge—r>/2(0°+1)
x Lol — 120 {o - ) v - A0

In this case, it holds A, = [—|z|,|z|] as well. The standard errors of all estimators of the first

and second moments of the target distribution for several values of # appear in Table 4. The

conclusions are similar to those in the previous examples.

3.4 A real data example

We applied our approach to the dataset Pima.te which is available in libary MASS of R and
has been used as a benchmark dataset by many authors such as Marin and Robert (2010) (for
the evaluation of model choice techniques), Douc and Robert (2011) and Jacob et al. (2011)
(for the comparison of several proposed estimators based on MH algorithms). The dataset
consists of n = 332 observations on a population of females at least 21 years old of Pima Indian
heritage living near Phoenix, AZ, which have been tested for diabetes. Let s; = 1 or 0 be the
response for the ith subject depending on whether she is diabetic or not according to the World
Health Organization criteria (variable type). For illustration purposes we will use the following

explanatory variables:

10



iLMH hw
MLE  E(6;]s,Z) Std. error  E(6;]s,Z)  Std. error n rvEw  2(T)
0o —5.0137 —5.0169 225 x 1072 —5.0173  1.56 x 1072 1685.4 .4832 11.7

6,  0.0218 0.0218 8.52 x 107 0.0218  6.26 x 107° 4078 9.7
6,  0.0024 0.0024  2.01 x 1074 0.0024 1.48 x 10~* 4052 9.6
65  0.5878 0.5860  6.72 x 1073 0.5859  4.88 x 1073 4352 104
0,  0.0412 0.0412  3.64 x 1074 0.0412  2.66 x 1074 4338 104

Table 5: (Example 3.4) Estimates of the posterior means of the five regression parameters and
their standard errors based on m = 500 independent runs. The columns labelled 7/ and z(r)
show the sample correlation coefficient for testing 012\4 g > 0122] and the corresponding Fisher’s
z-value, respectively.

e z;: plasma glucose concentration in an oral glucose tolerance test (variable glu)
e 2,: diastolic blood pressure in mmHg (variable bp)
e 23: diabetes pedigree function (variable ped)

e 2;: body mass index (variable bmi)

Denote by Z the 332 x 5 matrix consisting of a column of ones corresponding to the “intercept”
and four columns containing the explanatory variables. Let z; be its ith row. We use a standard
probit model, i.e. it is assumed that given the unknown parameter @ the s;’s are independent
Bernoulli random variables with P(s; = 1) = ®(2,0), where ® is the standard normal cdf.
We use the five-dimensional normal distribution with mean vector zero and covariance matrix

n(Z'Z)~" as a prior distribution for 8. It follows that the posterior distribution of @ is

w(0]s, Z) o exp{~6'(2'2)0/2n} [[{1 — ®(=/0)}' 0 (=/0)*".
=1

In order to estimate the posterior mean E(0|s, Z), we apply the IMH algorithm with proposal
distribution N5(9,cfl), where 6 is the maximum likelihood estimate of 8, 3 is its asymptotic
covariance matrix and c is a scale parameter. In our runs we set ¢ = 3.

We compare the estimators hare and by, by running the IMH algorithm m = 500 times.
The results are presented in Table 5. We can see that hg is more efficient with the standard
error reduction estimated from 25% to 30%. The high significance of the sample correlation

coefficients 7p7p,» indicates that 012\4 > 012;) for all estimators of the posterior means.

11



h(:C) iLMH iLDR iL[S hg n
T .003321 .003204 .003113 .003427 8457.6
z? 003574 .003385 .003289 .003572

Table 6: (Example 3.5) Estimated standard errors of the four estimators of the first and second
moment of the standard uniform target distribution with proposal distribution ¢(z|z) ~ U(0,1)
if x < 1/2 and Beta(1/2,1) if > 1/2 based on m = 200 independent runs.

3.5 Nonstandard Metropolis—Hastings: Uniform target distribution

Although in all of the previous examples the estimator ﬁw was the most efficient one, this is not

always the case. In this example we will see that it can actually be the worst.

Let us consider the MH algorithm with target distribution m ~ U(0,1), i.e., the standard
uniform distribution and proposal distribution ¢(z|z) ~ U(0,1) if x < 1/2 and Beta(1/2,1) if
x > 1/2. After some calculations it can be shown that the limit distribution of the accepted

states is
1, 0<z<1/4,

g(xz) oc ¢ 22+a2712), 1/4 <z <1/2,
1B8+2v2—2712(1+22)}, 1/2<z<L.
Our simulation results are presented in Table 6. We can see that the standard error of hg is
larger than those of the other estimators when h(z) = z. In particular, hg is less efficient even
than iLMH. On the other hand, when h(x) = 22, the estimator ﬁw is better than ilMH but worse

than the other two estimators.

4 Discussion

The reduction of variance of MCMC estimators and in particular of estimators arising from
Metropolis-Hastings algorithms has attracted in the last twenty years the attention of many
researchers. In this paper, we considered the modified estimator proposed by Malefaki and
Iliopoulos (2008) and showed via illustrative examples that it often performs better not only than
the standard MH estimator but also than the “optimal” (i.e., importance sampling) estimator
with respect to the particular proposal distribution. We also gave an explicit proof about the
properties of this estimator, namely, strong consistency and asymptotic normality in the special
case where the state space of the target distribution if finite. Moreover, we proved that in the

case of IMH (and finite state space), our estimator is indeed better than the optimal one.

Having run many simulations beyond those presented in Section 3, we strongly believe that

12



the estimator converges for general state space as well while the efficiency result holds always
in the case of IMH. Unfortunately, we were not able to give a formal proof mainly due to the
complicated form of the estimated weights. However, we would suggest to the practitioners who
run IMH algorithms to apply our method to the generated samples because apparently improves

the original MH estimators and is not time consuming.

Our approach can be extended to the case of Metropolis-within-Gibbs sampling schemes.
Assume for instance that the target distribution is 7,y (-,-) with full conditionals 7y (-[y)
and 7y (-|u). Suppose that it is hard to sample directly from 7y (-|u) and so, a Metropolis
step with target this full conditional is applied using some proposal distribution ¢(-|u,y). If
(U, Yy), t = 1,2,..., is the generated sequence, then in the marginal sequence Y, t = 1,2,...,
consists of repetitions of corresponding accepted proposals X,,, n = 1,2,..., say, that appear
&, n = 1,2,..., times, respectively. Then, a result similar to Proposition 1 for the sequence

(Xn,&n), n=1,2,..., can be shown. In particular, it holds E(&,|X, = =) = kw(z) where

{rw(@)} ! = / min{ry|y (z|u)g(z|u, z), 7y v (z|u)g(z|u, 2)} oy (0, 2)dudz

7TY(£)”Y|U(Z\U)
1

= 5 [WYU(;CW) min {

Clearly, this quantity can be estimated via the original sequence (U, Y}), t = 1,2,.... Suppose

q(Z|U,z) q(=|U,2Z) H
Ty w(Z|U) myu(=|U) J |

now that one wishes to estimate the expectation of a function h depending solely on Y. Since
its standard estimator has the form A/ in (2), everything works like in the previous sections.

In fact, in many toy examples we ran, we got results similar to those in Section 3.

Appendix: Proof of Theorem 1

(a) Assume without loss of generality that the state space is X = {1,...,m} for some m > 2

and set for convenience hy = h(k), 7, = w(k), gr = g9(k), grr = g(I|k) and wy, = w(k). Then,

1< 1 h(Xi)
- E w(X;)h(X;) = —

n & - a(XG1X) (X6 X5)
i i > i1 —Z?:Jl 3 mm{ w(]xj) P X)) }

n

= 2.2 — {a(X,]k) q(kX»}I(Xizm

5.
k=1 i=1 Z?:l Z?:jl 3 mln{ X,
_ i hk% Z?:l I(X; =k)
. £
=1 21 min {%Zv %f} Z?:l ﬁl(xj =1{)

S|
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By the ergodic theorem it holds n=* Y7 | I(X; = k) =% g;, and > =1 ﬁ
=1

Since (5) contains only finite sums we conclude that it converges almost surely to

hr.gk . hr.gk -
ZZ@ 1mm{%z qlk} Z 1 m . :K/thﬂk,:/{/Eﬂ(h)

i = o 2 min{ e, gy

I(X; =0 2> 7.

a.s.

because g = kY v, min {mTEgrs, Teger }. By taking h = 1 we get that n™1 Y0 @(X;) = &
and thus

b Zz 1U}( )/TL

i i WXDA(X) [ as, Ex(h).

(b) Let us define

and

Billingsley (1961) proved that

nl/Q(U' — g) — Nm(O, 211)

where U = (Uy,...,Un)T, g = (g1,...,9m)" and the ij entry of 3y is

oo

o1 (i) = 0i59: — 9ig; + 9i Z(g” )+ gj Z gﬂ - 9i)-

n=1

Here ggl) denotes the n-step transition probability from state i to state j and d;; is Kronecker’s

delta. Using similar arguments it can be proven that

(v )= () = 2an((0)- (5 =)
where the ij entry of the submatrix 3o is 012(ij) = rwjo11(ij) while the ij entry of the
submatrix 3oy is 022(i) = d;59ikw;(Kw; — 1) + /-@2wl-wj011(ij).
It is clear that the asymptotic distribution of n'/2{hg— E;(h)} can be found via the standard
delta method. Observe that ﬁw can be expressed as

=3 hUc /- U
v =S eV = 0 PVl

= fl(Uv V)v (6)

= wi{h; — Ex(h)}

(uv'v):(gv’iﬂ)
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and

LB {w(X0) (hi — Ex(h))|Xo = i}

RW;

0
8—%f1(u , V) (

u,v)=(g,km)

The variance of the asymptotic normal distribution of n'/2{hg — Ex(h)} is

g

2(h) = Vafl Z11Vufi + 2Va f{ B12Ve fi + Vafl B2V fi,

where V., f1, V, f1 are the vectors containing the derivatives with respect to u, v, respectively,
evaluated at (u,v) = (g, km). We will see below that the above expression is in fact as stated in
the theorem. To this end, let us also consider the IS “estimator” hrg and evaluate its asymptotic
variance too. After some algebra we get that

o~ Iyl -
his = Z T / Zl o = f2(U), (7)

1=1 PkIT

say. By (6) and (7) we see that the only difference between the two “estimators” is the replace-

ment of 7; by its unbiased estimate =1V} in he. By differentiation we get

= wi{hi — Eﬂ(h)}

u=g

Since the corresponding variance of the importance sampling estimator is

035(h) = Vufi 211Vl = Vafl 11 Vaufi,

it is clear that

[\

O-‘(h) - U%S(h) = —2Vy f212vvf1 —Vau 1TE22vuf1~

w
Set now Ay = =2V ff 12V fi, A2 = —Vaufi 222V fi, By = w(X,)h(X,) for n = 0,1,...,
and b; = w;h;, pu; = E(B1|Xo =) for i = 1,...,m. Consider further without loss of generality
that E;(h) = 0 and note that under stationarity, it holds that E.(h) = E4(By,) for all n. Then,

A = —QZZb (— 7)/-@10]011(13)
i=1 j=1
= - 222@%{ 895 = 919 +gzZ<g§?’ SR NCAR)
i=1 j=1 n=1

= { Z bzﬂzgz Z bzgz Zujgj + Z bzgz Z g Z gzj - gj)+
zujgj > -0}
= { szﬂzgz szgz Zﬂjg] + szgzz <ZM]9U Zﬂj9j>+
j=1
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> gy (Z bz'gj(»?) = bi9i> }
j=1 n=1 \i=1 i=1

But

m m

Y wigi =Y E(Bi|Xo = i)gi = E{{E(Bi|X0)} = Ey(B1) =0

i=1 i=1
and since X is reversible, i.e., it holds g;g;; = g;9;; and more generally gz‘g(n) )
we conclude that o m m

=2 S22 33 sl -
n=1i=1 j=1

Moreover,
m
S bigugs = zb(zbkgm)gz E,(BoBy)
i=1 i=1

and for all n, we have that

Z Z i) = bigi ( > bkgjk) g

1 k=1

-
Il

NE
M

1

m m m
1
bibgi Y gjkgzj =N b kgigi ) = Ey(BoBus1).
1 j=1 i=1 k=1

[
M
NE

s
Il
—
e
Il

Thus,

o0 o0 o0
Ay = 2E,(ByBy) + 4 Z Ey(BoBpi1) =2 Z Ey(BoB,) + 2 Z Ey(BoBpi1).

n=1 n=1 n=1

On the other hand,

NE

s
Il
—
<.
Il
—

Ay = — ( - ﬁ) < - &> {(5Z~jgmwi(/<cwi — 1) + mzwiwjaij}

KWw; KW,

SN

,u

2
U%

(e.]
it {%’9@- —gi95 + 9095 — )+ 95 Z (057’ - ) }

n=1

Il
51 i

s
Il
—

gikw;(kw; — 1)

ths
Ms

[
—
<.

I
—

m

m m m
= Z =2 ()= D> kg
7 i—1 j—1

=1 =1

_Zﬂzglzﬂjz gl] _gj Zﬂjgj ZNZZ gﬂ —gz)
m m m
= Zifz 22 pi)9i =D Hilligig
=

i=1 j=1

m

_ZZ”Z%(Z“J% iﬂjgj) ZZM%(ZMQJZ iuzgz-)

n=1 i=1 n=1 j=1
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co m  m

Z l:@z}ql 22:“’@91 - 2222#@.%#]9” .

i=1 n=1i=1 j=1

But

m

> uigi= Z ( Z bkgm> ( > béQié) 9i =YY b gigingic =
=1 =1 = /=1 k=1 ¢=1 =1

SO brbgr > grigie =Y bibegigyy = Eq(BoB),

k=1 /(=1 i=1 k=1 /(=

—_

and for all n,

Z Z Higz'lu'jgi(; Z Z < Z bkgm) ( Z begjz) gz‘gi(?) =
/=1

i=1 j=1 i=1 j=1

Z Z brbe Z 9igik Y gjzgw =D bibege Y aigy T =
=1 7j=1 i=1

k=1 /(=1

m m
ST bibegrgyy ™ = Ey(BoBayz).
k=1 /(=1

Hence,

'u g M g
Ay = Z,fwl—w (BoBy) — 2" Ey(BoBoya) = Z;wl 2> Ey(BoBuir). (0

n=1 n=1

From (8) and (9) we get
o2g(h) —o%(h) = A1+ Ay =Y % +23 " Ey(BoBy). (10)
i= ! n=1

By the standard asymptotic theory for Markov chains o%4(h) = E,(BZ) +2>.°0 | E4(BoBy,).
Since Ey(BE) = Vary{w(Xo)h(Xo)} part (b) of the theorem follows.

(¢) In order to compare the two variances note first that the first term of the sum in (10) is
clearly positive. Moreover, we know that > >, Eq(BoB;,) = > ", Covg(By, By) > 0 since each
residual sum of autocovariances starting from an even integer is nonnegative (see for example
Geyer, 1992). Thus a sufficient condition for the variances difference to be positive is E,(ByB1) >

0. This expectation can be expressed as a quadratic form, namely,

E,(BoBy) ZZb b;gij = b" Gb

i=1 j=1

where g;; = ¢;9;j. We will show that in the case of independence MH, the matrix G is nonneg-

ative definite. Indeed, in this case,

> oy min{q;my, g } min{q;7;, q;m;} 1.
= = X — . L
gw 9i9i5 = - 221:1 in{Qiﬂ'k, Qk;ﬂ'i} K mln{qm], Qﬂrz}
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Consider without loss of generality that

Q1/7T1 << Qm/ﬂ-m (11)

and set v;; = K 1g;m;. Then clearly §;; = vinjiv; Where i A j = min{é,j} and i V j = max{s, j}
so G is nonnegative definite. To see that, proceed by induction to show that all its principal
minors are nonnegative. Let G denote the matrix consisting of the first k rows and columns of
G. Then, ]én\ = yia1 = K 'qum > 0. Suppose now that ]ékk\ > 0 for some k£ > 1. In order to
prove that |G 1 11| > 0, multiply the k-th row of Gy k1 by Thy1/m and subtract it from
the (k + 1)-th. Then the resulting matrix has all last row’s elements equal to zero except from
the last one which is ™ g1 Tpy1 — nflqkﬂﬁﬂ/ﬂk = n*1ﬂ£+1(qk+1/7rk+1 —qi/m). By (11) this

quantity is nonnegative thus, ’ék+1,k+1‘ = nflwiﬂ(qkﬂ/wkﬂ — qk/wk)\ékk\ > 0.
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