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Abstract

The Metropolis–Hastings algorithm is one of the most basic and well-studied Markov
chain Monte Carlo methods. It generates a Markov chain which has as limit distribution
the target distribution by simulating observations from a different proposal distribution. A
proposed value is accepted with some particular probability otherwise the previous value is
repeated. As a consequence, the accepted values are repeated a positive number of times and
thus any resulting ergodic mean is, in fact, a weighted average. It turns out that this weighted
average is an importance sampling-type estimator with random weights. By the standard
theory of importance sampling, replacement of these random weights by their (conditional)
expectations leads to more efficient estimators. In this paper we study the estimator arising
by replacing the random weights with certain estimators of their conditional expectations.
We illustrate by simulations that it is often more efficient than the original estimator while
in the case of the independence Metropolis–Hastings and for distributions with finite support
we formally prove that it is even better than the “optimal” importance sampling estimator.

Key words and phrases: Metropolis–Hastings algorithm, importance sampling, weighted es-

timators, variance reduction.

1 Introduction

The last decades Markov chain Monte Carlo (MCMC) algorithms have become very popular

and widely used tools in Computational Statistics as a way of sampling from complex multidi-

mensional probability distributions. The most basic MCMC method is the Metropolis–Hastings

(MH) algorithm which generates a Markov chain with limit distribution the target distribu-

tion by drawing observations from a proposal distribution (cf. Metropolis et al., 1953, Hastings,

1970). A proposed value is accepted with a certain probability otherwise the previous accepted

value is repeated. As a consequence, the accepted values are repeated a positive number of

times. Thus, a positive weight corresponds to any accepted value.

To be formal, let π be the density of the target distribution with respect to some underlying

measure µ and q be another distribution with at least the same support as π. The MH algorithm
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with proposal distribution q generates a Markov chain Y = (Yt)t∈Z+ (Z+ = {0, 1, 2, . . .}) through

the following transition. It starts from some (either deterministic or randomly chosen) state y0

in the support of π and at time t + 1, given Yt = y, proposes z ∼ q(z|y) and sets

Yt+1 =

{

z, with probability a(y, z)

y, with probability 1 − a(y, z),

where

a(y, z) = min

{

1,
π(z)q(y|z)

π(y)q(z|y)

}

.

It is well–known that the generated Markov chain Y is reversible with limit distribution π.

Malefaki and Iliopoulos (2008, Section 3) studied Y from a different perspective. More specifi-

cally, they considered Y as a discrete time Markov jump process with embedded Markov chain

the sequence of accepted states and sojourn times the corresponding number of repetitions.

Let X = (Xn)n∈Z+ be the sequence of accepted states and ξ = (ξn)n∈Z+ be their corre-

sponding numbers of appearances in Y . This means that Xi is repeated ξi times in Y until

the acceptance of the next stated Xi+1. The results of Malefaki and Iliopoulos (2008) can be

collected in the following proposition (see also Douc and Robert, 2011).

Proposition 1. (a) The conditional distribution of ξn given Xn = xn is geometric with proba-

bility of success
∫

α(xn, z)q(z|xn)µ(dz), i.e.,

p(ξ|xn) =
{∫

a(xn, z)q(z|xn)µ(dz)
} {

1 −
∫

a(xn, z)q(z|xn)µ(dz)
}ξ−1

, ξ = 1, 2, . . . .

(b) The sequence X = (Xn)n∈Z+ is a Markov chain with transition density

g(xn|xn−1) =
a(xn−1, xn)q(xn|xn−1)

∫

a(xn−1, z)q(z|xn−1)µ(dz)
=

min{π(xn−1)q(xn|xn−1), π(xn)q(xn−1|xn)}
∫

min{π(xn−1)q(z|xn−1), π(z)q(xn−1|z)}µ(dz)
.

(c) The Markov chain X = (Xn)n∈Z+ is reversible with stationary distribution

g(x) ∝
∫

min{π(x)q(z|x), π(z)q(x|z)}µ(dz). (1)

(d) The sequence (Xn, ξn)n∈Z+ is properly weighted with respect to π, i.e., E(ξi|Xi = x) =

κw(x), where w(x) = π(x)/g(x) and κ =
(∫∫

min{π(x)q(z|x), π(z)q(x|z)}µ(dz)µ(dx)
)−1

is the

normalizing constant of g.

Let Y0, Y1, . . . , YT be the sequence generated from the MH algorithm. Then, the standard

estimator of Eπ(h) =
∫

h(x)π(x)µ(dx) is the ergodic mean

ĥ∗
MH =

1

T

T
∑

t=1

h(Yt).
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In practice, the estimate is evaluated after discarding a certain part of the first Y -values that

corresponds to the burn-in period. If this is the case, denote by Y1 the first value after that

period. Note that an alternative expression for the above estimator is

ĥ∗
MH =

1

T

{ n
∑

i=1

ξih(Xi) +

(

T −
n

∑

i=1

ξi

)

h(Xn+1)

}

.

Here n = n(T ) is the largest integer for which T >
∑n

i=1 ξi. Note that an alternative estimator

of Eπ(h) that takes into account only the first n states is

ĥMH =

∑n
i=1 ξih(Xi)
∑n

i=1 ξi
. (2)

Part (d) of Proposition 1 suggests that if the evaluation of w(x) is possible, another estimator

of Eπ(h) can be

ĥIS =

∑n
i=1 w(Xi)h(Xi)
∑n

i=1 w(Xi)
.

In fact, ĥIS is more efficient than ĥMH . This has been realized by Malefaki and Iliopoulos (2008)

who have shown that if

n1/2{ĥIS − Eπ(h)} d−→ N (0, σ2
IS(h)) with σ2

IS < ∞,

then

n1/2{ĥMH − Eπ(h)} d−→ N (0, σ2
MH(h)),

where

σ2
MH(h) = σ2

IS(h) +
1

κ2
Eg

[

V ar(ξ|X){h(X) − Eπ(h)}2
]

. (3)

In the proof of Theorem 2 of Douc and Robert (2011) it is shown that n/T
p−→ Eπ(w) ∈ (0,∞)

and T−1/2(T − ∑n
i=1 ξi)

p−→ 0 as T → ∞. This implies that the asymptotic distributions of

n1/2{ĥMH − Eπ(h)} and n1/2{ĥ∗
MH − Eπ(h)} coincide. Due to this asymptotic equivalence, in

the sequel we will consider ĥMH as the MH estimator instead of ĥ∗
MH . Moreover, since overall it

does not matter whether n is random or fixed, whenever it is convenient (as in the presentation

of our result) we will assume it to be fixed so that T =
∑n

i=1 ξi.

Note that ĥIS is actually a standard importance sampling (IS) estimator with the only dif-

ference that it is produced by a Markov chain with limit distribution g rather than direct iid

sampling from g. Hence, it is justified to refer to w(x)’s as “importance weights”. Unfortu-

nately, w(x) cannot be evaluated except for some toy examples as those presented in Section

3. Therefore, Malefaki and Iliopoulos (2008) suggested to estimate the importance weights and

plug their estimates into ĥIS . They further illustrated by simulations that the resulting esti-

mator, ĥŵ, say, behaves well and in some cases almost the same as ĥIS . In this paper we move
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one step further and show that ĥŵ is often more efficient not only than ĥMH but than ĥIS as

well. This is formally proven in the case of independence MH (IMH), i.e., when q(z|y) = q(z),

and finite state space. However, simulations indicate that for the IMH this holds for continuous

state space as well.

In the literature there are several approaches to improve on ĥMH . By considering the above

point of view, Douc and Robert (2011) replaced the geometric distributed weights ξ1, . . . , ξn

by some other (also random) weights ξ̂1, . . . , ξ̂n in such a way that E(ξ̂i|Xi) = E(ξi|Xi) and

V ar(ξ̂i|Xi) < V ar(ξi|Xi). The resulting estimator is more efficient than ĥMH due to (3). Alter-

native methods for improving MH estimators based on Rao–Blackwellization have been presented

by Casella and Roberts (1996) and Atchadé and Perron (2005). However, their evaluation re-

quires high computational cost and therefore makes them practically useless. As Atchadé and

Perron (2005) say,

“... if we take into account how time consuming is the Rao–Blackwellization for

large values of n, it is better to increase the sample size than to perform Rao–

Blackwellization when we want to reduce the variance in case n is large ...”

Recently, a different approach is used by Jacob et al. (2011) in the special case of IMH algorithm.

These authors run blocks of several IMH algorithms which share permutations of the same

proposed values. The resulting estimator is a weighted average of all of them with corresponding

weights their total number of appearances and is more efficient than ĥMH .

The rest of the paper is organized as follows. In Section 2, we review the approach of

Malefaki and Iliopoulos (2008) and state our theoretical result. We also describe an algorithm

for the efficient calculation of our importance weights’ estimates in the special case of IMH. In

Section 3 we give some illustrative toy examples as well as a real data example. Moreover, we

compare by simulation the performance of our estimator with those of Douc and Robert (2011)

and Jacob et al. (2011). Section 4 contains a brief discussion. The paper concludes with an

appendix containing the proof of our result.

2 Estimation of the importance weights and main result

Using the definition of the distribution g in (1) and its normalizing constant κ we get that

{κw(x)}−1 =

∫

a(x, z)q(z|x)µ(dz)

=

∫

min

{

q(z|x)

π(z)
,
q(x|z)

π(x)

}

π(z)µ(dz) = Eπ

[

min

{

q(Z|x)

π(Z)
,
q(x|Z)

π(x)

}]

.
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Thus, the inverse of importance weights is, in fact, an expectation with respect to the target

distribution π. Hence, they can be estimated using the original MH sequence Y . Since 1/w(x) 6=
0 for all x, for each fixed x the estimator

κŵ(x) =

∑n
j=1 ξj

∑n
j=1 ξj min{q(Xj |x)/π(Xj), q(x|Xj)/π(x)} (4)

converges almost surely to κw(x). So, the idea of Malefaki and Iliopoulos (2008) is as follows:

Use ŵ(Xi) in the place of the importance weights w(Xi) and estimate Eπ(h) with

ĥŵ =

∑n
i=1 ŵ(Xi)h(Xi)
∑n

i=1 ŵ(Xi)
.

Note here that the weight ŵ(Xi) is a function of all (Xi, ξi)16i6n and not only of Xi. This

causes a problem, since the asymptotic properties of ĥŵ are not straightforward. In particular,

it is not even clear whether ĥŵ converges, in general, to Eπ(h). Moreover, if this is the case and

if further n1/2{ĥŵ − Eπ(h)} d−→ N (0, σ2
ŵ(h)) holds, then the variance σ2

ŵ(h) does not have an

expression similar to (3).

We have run extensive simulations and all of them suggest that ĥŵ converges indeed to

Eπ(h). Moreover, there are cases where ĥŵ is more efficient not only than ĥMH but also than

the “optimal estimator” ĥIS . These facts are stated in the following theorem for the special case

of finite state space.

Theorem 1. If the state space is finite:

(a) The estimator ĥŵ converges to Eπ(h) almost surely.

(b) n1/2{ĥŵ − Eπ(h)} d→ N (0, σ2
ŵ(h)), where

σ2
ŵ(h) = V arg{w(X0)h(X0)} − Eg

{

E
[

w(X1){h(X1) − Eπ(h)}|X0

]2

κw(X0)

}

.

(c) In the case of IMH it holds σ2
ŵ(h) < σ2

IS(h) and thus, σ2
ŵ < σ2

MH(h).

The (rather lengthy) proof of Theorem 1 can be found in the Appendix.

One may argue against the practical usefulness of the estimator ĥŵ due to the extra com-

putational cost needed for the estimation of the weights. There are some tricks one could

use in order to reduce the computation time. Malefaki and Iliopoulos (2008) defined the sets

Ax := {z : π(x)q(z|x) 6 π(z)q(x|z)}, and expressed the estimate of κw(xi) as

κŵ(xi) =
n

∑

j=1

ξj

/{ n
∑

j=1

ξj
q(xj |xi)

π(xj)
I(xj ∈ Axi

) +
1

π(xi)

n
∑

j=1

ξjq(xi|xj)I(xj ∈ Ac
xi

)

}

.

In several examples, the sets Ax have a simple form, so obtaining the estimates is not too

time consuming. In particular, the calculation of the weights’ estimates can be considerebly

accelerated in the special case of IMH by using the following procedure.
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Algorithm 1. (Calculation of ŵ for IMH )

Given the IMH output (xi, ξi)16i6n:

Step 0: Sort ri = q(xi)/π(xi), i = 1, . . . , n, in ascending order. Let r(1) 6 · · · 6 r(n)

be the corresponding ordered values and denote also x(i), ξ(i) the values of x and ξ that

correspond to r(i).

Step 1: Set C1 = 0, C2 = r(1)

∑n
j=1 ξj and κŵ(x(1)) =

∑n
j=1 ξj/(C1 + C2).

Step i, for i = 2, . . . , n: Update C1 = C1 + ξ(i−1)r(i−1), C2 = (C2 − ξ(i−1)r(i−1))r(i)/r(i−1),

and set κŵ(x(i)) =
∑n

j=1 ξj/(C1 + C2).

Algorithm 1 delivers the estimated weights very quickly. Given that the ratios ri have been

already calculated in the original MH run since they are needed for the acceptance probabilities,

the most heavy part of the algorithm becomes the sorting procedure. Nervertheless, in all of the

examples we have run, the additional time for the weights’ estimation was very short compared

to the time needed for the IMH run. Unfortunately, for other MH algorithms this is not the case

because most of the ratios q(xj |xi)/π(xj) are not available from the original run. This makes the

weights’ estimation procedure slow and so the possible gain in variance can be counterbalanced

by increasing the length of the MH chain.

3 Examples

The examples in this section illustrate the performance of our estimator compared with ĥMH and

ĥIS in terms of asymptotic variance. In our simulations we have included the estimator ĥDR pro-

posed by Douc and Robert (2011), the asymptotic variance of which is known to lie between those

of the above estimators. In all of the examples we ran independently m = 200 chains of length

T = 10000 and we recorded the corresponding estimators of Eπ(X) and Eπ(X2). (For the real

data example in Subsection 3.4 we used m = 500 chains.) All simulations have been programmed

in Fortran 95 and run on a 2.4 GHz Intel Core 2 Processor with 2 GB RAM. The variances

comparison of any two estimators is made as follows. Denote by (ĥ
(1)
1 , ĥ

(1)
2 ), . . . , (ĥ

(m)
1 , ĥ

(m)
2 ) the

m realizations of the estimators ĥ1, ĥ2, where each pair corresponds to the same chain. It is

easy to see that V ar(ĥ1) > V ar(ĥ2) if and only if ĥ1 + ĥ2 and ĥ1 − ĥ2 are positively correlated.

So, in order to compare the variances we consider the transformed pairs (ĥ
(j)
1 + ĥ

(j)
2 , ĥ

(j)
1 − ĥ

(j)
2 ),

j = 1, . . . ,m, and test the one-sided significance of their sample correlation coefficient.
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θ h(x) σ̂MH σ̂DR σ̂IS σ̂ŵ n̄ rIS,ŵ z(r)

0.1 x .0349 .0325 .0304 .0218 1813.8 .7777 14.6

x2 .1242 .1147 .1096 .0728 .8119 15.9

0.5 x .0149 .0144 .0141 .0119 6670.3 .9014 20.8

x2 .0569 .0561 .0557 .0478 .8747 19.0

0.9 x .0108 .0106 .0106 .0103 9471.8 .9614 27.6

x2 .0455 .0450 .0450 .0441 .8121 15.9

Table 1: (Example 3.1) Estimated standard errors of the four estimators of the first and second
moment of the target distribution π(x) = e−x, x > 0, with proposal distribution q(x) = θe−θx,
x > 0, based on m = 200 independent runs. The columns labelled rIS,ŵ and z(r) show the sample
correlation coefficient for testing σ2

IS > σ2
ŵ and the corresponding Fisher’s z-value, respectively.

3.1 Independence Metropolis–Hastings: Exponential target distribution

Consider the IMH algorithm with target distribution π(x) = e−x, x > 0, and proposal q(z|x) ≡
q(z) = θe−θz, z > 0, with θ < 1. In this case it can be shown that g(x) ∝ e−x(θ+1)(θ − 1 + eθx),

x > 0, and thus, w(x) = π(x)/g(x) = {e−θx(θ − 1 + eθx)}−1, x > 0. It can be easily seen that

in this example it holds Ax = (0, x] and that the ordering of ri’s is the same as that of xi’s. So,

the estimates of the weights become

κŵ(x(i)) =

n
∑

j=1

ξj

/{ i−1
∑

j=1

ξ(j)e
(1−θ)x(j) + e(1−θ)x(i)

n
∑

j=i

ξ(j)

}

, i = 1, . . . , n,

where x(1) 6 · · · 6 x(n) are the ordered x values and ξ(1), . . . , ξ(n) their corresponding weights.

We considered three values of θ, namely, 0.1, 0.5 and 0.9. Note that as θ increases, the

proposal distribution gets closer to the target distribution. The estimated standard errors of

the estimators are presented in Table 1 together with the average length, n̄, of the accepted

states sequence. As expected, the “estimator” ĥIS is more efficient than ĥMH while ĥDR lies

in between. On the other hand, the standard error of our estimator, ĥw̃, is smaller not only

than those of ĥMH and ĥDR but of ĥIS as well. The high significance of the sample correlation

coefficients described in the beginning of the section confirms that in all cases of Table 1 it holds

σ2
IS > σ2

ŵ. Indeed, the corresponding Fisher’s z transforms (which are supposed to come from

a standard normal distribution when the population correlation coefficient equals zero) imply

that all p-values are practically zero. Note that this agrees with Theorem 1, although here the

state space is continuous.

As mentioned in the Introduction, Jacob et al. (2011) proposed a new method in order to

improve estimation in the case of independence MH. It is based on a different idea in that many
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ĥJRS(20, 500) ĥJRS(100, 100) ĥJRS(1000, 10) ĥŵ

θ h(x) σ̂JRS CPU σ̂JRS CPU σ̂JRS CPU σ̂ŵ CPU

0.1 x .0156 1.144 .0181 .2186 .0232 .0225 .0218 .0031

x2 .0414 (.0469) .0487 (.0405) .0775 (.0078) .0728 (.0062)

0.5 x .0093 1.075 .0087 .2116 .0098 .0208 .0119 .0045

x2 .0290 (.0102) .0268 (.0088) .0310 (.0073) .0478 (.0070)

0.9 x .0098 .9474 .0094 .1769 .0085 .0184 .0103 .0051

x2 .0375 (.0262) .0378 (.0078) .0346 (.0064) .0441 (.0073)

Table 2: (Example 3.1) Estimated standard errors of ĥJRS for selected (b, p)’s and mean CPU
times along with their standard deviations based on m = 200 independent runs. The last two
columns contain the corresponding results for ĥŵ.

parallel sequences sharing the same proposals are simulated rather than a single Markov chain.

More specifically, in the beginning the T independent proposals are split into b blocks of length

p (so that T = bp). For each block p random permutations of the particular proposals are

considered and the corresponding MH sequences of length p are simulated. As soon as the block

is finished, one among the last states of the p sequences is randomly selected and it is used as

starting point for the p sequences of the next block. Finally, the estimator of Eπ(h), ĥJRS(b, p)

say, averages over all bp2 simulated values.

In order to compare their approach with ours we consider both the standard errors of es-

timators and the CPU time needed to obtain them. As we can see in Table 2, σ̂JRS is in

almost all cases less than σ̂ŵ with the largest improvement being about 44% (for θ = 0.1 and

(b, p) = (20, 500)). However, when p is small and the proposal is far from the target distribution

we may get σ̂JRS > σ̂ŵ. In general, the larger the value of p the higher the improvement. Note

though that in all of the examples we ran, the improvement in standard error was never more

than 50%. On the other hand, the CPU times needed for the method of Jacob et al. (2011) are

considerably greater than ours even for small p. For instance, in the case of the above men-

tioned largest standard error improvement, the CPU time was over 350 times higher. In fact,

the simulations showed that the CPU time is roughly linear in p. This is not surprising since

the method repeats the MH procedure p times. Given the small standard error improvement

of ĥJRS and the huge difference in CPU times, it is clear that one can simulate a single MH

sequence with larger T in order to make ĥŵ more efficient and still keep the required time lower.
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θ h(x) σ̂MH σ̂DR σ̂IS σ̂ŵ n̄ rIS,ŵ z(r)

1.5 x .01231 .01136 .01123 .01123 7488.2 .0182 0.26

x2 .01831 .01810 .01730 .01520 .9306 23.3

5.0 x .02375 .02161 .01827 .01826 2508.8 .0294 0.41

x2 .03690 .03374 .03012 .02283 .7418 13.4

10.0 x .03537 .03394 .02481 .02469 1267.8 .1679 2.38

x2 .05604 .05352 .04516 .03218 .7865 14.9

Table 3: (Example 3.2) Estimated standard errors of the four estimators of the first and second
moment of the target distribution π(x) ∝ e−x2/2, x ∈ R,, with proposal distribution q(z) ∝
e−z2/2θ2

, z ∈ R, based on m = 200 independent runs. The columns labelled rIS,ŵ and z(r) show
the sample correlation coefficient for testing σ2

IS > σ2
ŵ and the corresponding Fisher’s z-value,

respectively.

3.2 Independence Metropolis–Hastings: Normal target distribution

Consider the IMH algorithm with target distribution π(x) ∝ e−x2/2, x ∈ R, and proposal

distribution q(z) ∝ e−z2/2θ2
, z ∈ R, with θ > 1. It can be verified that in this example the limit

distribution of the accepted states has density

g(x) ∝
∫

min {π(x)q(z), π(z)q(x)} µ(dz)

∝
∫

min{e−x2/2−z2/2θ2
, e−z2/2−x2/2θ2}dz

∝ θ[2Φ(|x|/θ) − 1]e−x2/2 + 2Φ(−|x|)e−x2/2θ2
,

where Φ denotes the cdf of the standard normal distribution, and that Ax = [−|x|, |x|].
We considered several values of θ and repeated the procedure of Example 3.1. The estimated

standard errors of the four estimators are presented in Table 3. We can see that their ordering

is the same as before. Note that the insignificance of the sample correlation coefficients used to

test for σ2
IS > σ2

ŵ in the case of estimating Eπ(X) is due to the small number m of independent

chains. We increased m and concluded that it must be at least 10000 so that rIS,ŵ to become

significant. This means that the standard error of ĥŵ is indeed smaller but the difference

is marginal. We also mention that the comparison of our method with the one of Jacob et

al. (2011) gave analogous results with Example 3.1 which are not presented here for brevity.

9



θ h(x) σ̂MH σ̂DR σ̂IS σ̂ŵ n̄ rIS,ŵ z(r)

1.5 x .02284 .02206 .02119 .01150 5900.9 .8631 18.3

x2 .03137 .02998 .02898 .01782 .8364 17.0

5.0 x .02397 .02330 .01913 .01802 2426.9 .6292 10.4

x2 .04022 .03893 .03506 .02614 .8057 15.6

10.0 x .03570 .03506 .02745 .02702 1257.6 .4163 6.2

x2 .05869 .05210 .04652 .03391 .7777 14.6

Table 4: (Example 3.3) Estimated standard errors of the four estimators of the first and second
moment of the target distribution π(x) ∝ e−x2/2, x ∈ R, with proposal distribution q(z|x) ∝
e−(z−x)2/2θ2

, z ∈ R, based on m = 200 independent runs. The columns labelled rIS,ŵ and z(r)
show the sample correlation coefficient for testing σ2

IS > σ2
ŵ and the corresponding Fisher’s

z-value, respectively.

3.3 Random walk Metropolis–Hastings: Normal target distribution

Let π(x) ∝ e−x2/2, x ∈ R, and q(z|x) ∝ e−(z−x)2/2θ2
, z ∈ R. Then, the sequence of the accepted

states of the corresponding MH algorithm has limit distribution

g(x) ∝
∫

min {π(x)q(z|x), π(z)q(x|z)} µ(dz)

∝
∫

min{e−x2/2−(z−x)2/2θ2
, e−z2/2−(x−z)2/2θ2}dz

∝ {2Φ(2|x|/θ) − 1/2}θe−x2/2 +

{

Φ

(

− (θ2 + 2)|x|
θ
√

θ2 + 1

)

+ Φ

(

− θ|x|√
θ2 + 1

)}

θe−x2/2(θ2+1)

√
1 + θ2

.

In this case, it holds Ax = [−|x|, |x|] as well. The standard errors of all estimators of the first

and second moments of the target distribution for several values of θ appear in Table 4. The

conclusions are similar to those in the previous examples.

3.4 A real data example

We applied our approach to the dataset Pima.te which is available in libary MASS of R and

has been used as a benchmark dataset by many authors such as Marin and Robert (2010) (for

the evaluation of model choice techniques), Douc and Robert (2011) and Jacob et al. (2011)

(for the comparison of several proposed estimators based on MH algorithms). The dataset

consists of n = 332 observations on a population of females at least 21 years old of Pima Indian

heritage living near Phoenix, AZ, which have been tested for diabetes. Let si = 1 or 0 be the

response for the ith subject depending on whether she is diabetic or not according to the World

Health Organization criteria (variable type). For illustration purposes we will use the following

explanatory variables:
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ĥMH ĥŵ

MLE Ê(θi|s,Z) Std. error Ê(θi|s,Z) Std. error n̄ rMH,ŵ z(r)

θ0 −5.0137 −5.0169 2.25 × 10−2 −5.0173 1.56 × 10−2 1685.4 .4832 11.7

θ1 0.0218 0.0218 8.52 × 10−5 0.0218 6.26 × 10−5 .4078 9.7

θ2 0.0024 0.0024 2.01 × 10−4 0.0024 1.48 × 10−4 .4052 9.6

θ3 0.5878 0.5860 6.72 × 10−3 0.5859 4.88 × 10−3 .4352 10.4

θ4 0.0412 0.0412 3.64 × 10−4 0.0412 2.66 × 10−4 .4338 10.4

Table 5: (Example 3.4) Estimates of the posterior means of the five regression parameters and
their standard errors based on m = 500 independent runs. The columns labelled rMH,ŵ and z(r)
show the sample correlation coefficient for testing σ2

MH > σ2
ŵ and the corresponding Fisher’s

z-value, respectively.

• z1: plasma glucose concentration in an oral glucose tolerance test (variable glu)

• z2: diastolic blood pressure in mmHg (variable bp)

• z3: diabetes pedigree function (variable ped)

• z4: body mass index (variable bmi)

Denote by Z the 332× 5 matrix consisting of a column of ones corresponding to the “intercept”

and four columns containing the explanatory variables. Let zi be its ith row. We use a standard

probit model, i.e. it is assumed that given the unknown parameter θ the si’s are independent

Bernoulli random variables with P (si = 1) = Φ(z′
iθ), where Φ is the standard normal cdf.

We use the five-dimensional normal distribution with mean vector zero and covariance matrix

n(Z′Z)−1 as a prior distribution for θ. It follows that the posterior distribution of θ is

π(θ|s,Z) ∝ exp{−θ′(Z ′Z)θ/2n}
n

∏

i=1

{1 − Φ(z′
iθ)}1−siΦ(z′

iθ)si .

In order to estimate the posterior mean E(θ|s,Z), we apply the IMH algorithm with proposal

distribution N5(θ̂, cΣ̂), where θ̂ is the maximum likelihood estimate of θ, Σ̂ is its asymptotic

covariance matrix and c is a scale parameter. In our runs we set c = 3.

We compare the estimators ĥMH and ĥŵ by running the IMH algorithm m = 500 times.

The results are presented in Table 5. We can see that ĥŵ is more efficient with the standard

error reduction estimated from 25% to 30%. The high significance of the sample correlation

coefficients rMH,ŵ indicates that σ2
MH > σ2

ŵ for all estimators of the posterior means.

11



h(x) ĥMH ĥDR ĥIS ĥŵ n̄

x .003321 .003204 .003113 .003427 8457.6

x2 .003574 .003385 .003289 .003572

Table 6: (Example 3.5) Estimated standard errors of the four estimators of the first and second
moment of the standard uniform target distribution with proposal distribution q(z|x) ∼ U(0, 1)
if x 6 1/2 and Beta(1/2, 1) if x > 1/2 based on m = 200 independent runs.

3.5 Nonstandard Metropolis–Hastings: Uniform target distribution

Although in all of the previous examples the estimator ĥŵ was the most efficient one, this is not

always the case. In this example we will see that it can actually be the worst.

Let us consider the MH algorithm with target distribution π ∼ U(0, 1), i.e., the standard

uniform distribution and proposal distribution q(z|x) ∼ U(0, 1) if x 6 1/2 and Beta(1/2, 1) if

x > 1/2. After some calculations it can be shown that the limit distribution of the accepted

states is

g(x) ∝















1, 0 < x 6 1/4,
1
4(2 + x−1/2), 1/4 < x 6 1/2,
1
4{3 + 2

√
2 − x−1/2(1 + 2x)}, 1/2 < x < 1.

Our simulation results are presented in Table 6. We can see that the standard error of ĥŵ is

larger than those of the other estimators when h(x) = x. In particular, ĥŵ is less efficient even

than ĥMH . On the other hand, when h(x) = x2, the estimator ĥŵ is better than ĥMH but worse

than the other two estimators.

4 Discussion

The reduction of variance of MCMC estimators and in particular of estimators arising from

Metropolis-Hastings algorithms has attracted in the last twenty years the attention of many

researchers. In this paper, we considered the modified estimator proposed by Malefaki and

Iliopoulos (2008) and showed via illustrative examples that it often performs better not only than

the standard MH estimator but also than the “optimal” (i.e., importance sampling) estimator

with respect to the particular proposal distribution. We also gave an explicit proof about the

properties of this estimator, namely, strong consistency and asymptotic normality in the special

case where the state space of the target distribution if finite. Moreover, we proved that in the

case of IMH (and finite state space), our estimator is indeed better than the optimal one.

Having run many simulations beyond those presented in Section 3, we strongly believe that
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the estimator converges for general state space as well while the efficiency result holds always

in the case of IMH. Unfortunately, we were not able to give a formal proof mainly due to the

complicated form of the estimated weights. However, we would suggest to the practitioners who

run IMH algorithms to apply our method to the generated samples because apparently improves

the original MH estimators and is not time consuming.

Our approach can be extended to the case of Metropolis-within-Gibbs sampling schemes.

Assume for instance that the target distribution is πU,Y (·, ·) with full conditionals πU |Y (·|y)

and πY |U(·|u). Suppose that it is hard to sample directly from πY |U (·|u) and so, a Metropolis

step with target this full conditional is applied using some proposal distribution q(·|u, y). If

(Ut, Yt), t = 1, 2, . . ., is the generated sequence, then in the marginal sequence Yt, t = 1, 2, . . .,

consists of repetitions of corresponding accepted proposals Xn, n = 1, 2, . . ., say, that appear

ξn, n = 1, 2, . . ., times, respectively. Then, a result similar to Proposition 1 for the sequence

(Xn, ξn), n = 1, 2, . . ., can be shown. In particular, it holds E(ξn|Xn = x) = κw(x) where

{κw(x)}−1 =

∫∫

min{πY |U (x|u)q(z|u, x), πY |U (z|u)q(x|u, z)}
πY (x)πY |U (z|u)

πU,Y (u, z)dudz

=
1

πY (x)
Eπ

[

πY |U(x|U)min

{

q(Z|U, x)

πY |U(Z|U)
,

q(x|U,Z)

πY |U (x|U)

}]

.

Clearly, this quantity can be estimated via the original sequence (Ut, Yt), t = 1, 2, . . .. Suppose

now that one wishes to estimate the expectation of a function h depending solely on Y . Since

its standard estimator has the form ĥMH in (2), everything works like in the previous sections.

In fact, in many toy examples we ran, we got results similar to those in Section 3.

Appendix: Proof of Theorem 1

(a) Assume without loss of generality that the state space is X = {1, . . . ,m} for some m ≥ 2

and set for convenience hk = h(k), πk = π(k), gk = g(k), gkl = g(l|k) and wk = w(k). Then,

1

n

n
∑

i=1

ŵ(Xi)h(Xi) =
1

n

n
∑

i=1

h(Xi)
∑n

j=1
ξj

∑n
l=1 ξl

min
{

q(Xj |Xi)
π(Xj)

,
q(Xi|Xj)

π(Xi)

}

=
m

∑

k=1

1

n

n
∑

i=1

hk
∑n

j=1
ξj

∑n
l=1 ξl

min
{

q(Xj |k)
π(Xj)

,
q(k|Xj)

πk

}I(Xi = k)

=
m

∑

k=1

hk
1
n

∑n
i=1 I(Xi = k)

∑m
ℓ=1 min

{ qkℓ

πℓ
, qℓk

πk

}
∑n

j=1
ξj

∑n
l=1 ξl

I(Xj = ℓ)
(5)
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By the ergodic theorem it holds n−1
∑n

i=1 I(Xi = k)
a.s.−→ gk and

∑n
j=1

ξj
∑n

l=1 ξl
I(Xj = ℓ)

a.s.−→ πℓ.

Since (5) contains only finite sums we conclude that it converges almost surely to

m
∑

k=1

hkgk
∑m

ℓ=1 min
{ qkℓ

πℓ
, qℓk

πk

}

πℓ
=

m
∑

k=1

hkgk
1
πk

∑m
ℓ=1 min{πkqkℓ, πℓqℓk}

= κ

m
∑

k=1

hkπk = κEπ(h)

because gk = κ
∑m

i=1 min {πkgkℓ, πℓgℓk}. By taking h ≡ 1 we get that n−1
∑n

i=1 ŵ(Xi)
a.s.−→ κ

and thus

ĥŵ =

∑n
i=1 ŵ(Xi)h(Xi)/n
∑n

i=1 ŵ(Xi)/n

a.s.−→ Eπ(h).

(b) Let us define

Ūk =
1

n

n
∑

i=1

I(Xi = k), k = 1, . . . ,m,

V̄k =
1

n

n
∑

i=1

ξiI(Xi = k), k = 1, . . . ,m,

and

ρkl = min
{qlk

πk
,
qlk

πl

}

, k, l = 1, . . . ,m.

Billingsley (1961) proved that

n1/2(Ū − g) → Nm(0,Σ11)

where Ū = (Ū1, . . . , Ūm)T , g = (g1, . . . , gm)T and the ij entry of Σ11 is

σ11(ij) = δijgi − gigj + gi

∞
∑

n=1

(g
(n)
ij − gj) + gj

∞
∑

n=1

(g
(n)
ji − gi).

Here g
(n)
ij denotes the n-step transition probability from state i to state j and δij is Kronecker’s

delta. Using similar arguments it can be proven that

n1/2
((

Ū

V̄

)

−
(

g

κπ

))

→ N2m

((

0

0

)

,
(

Σ11 Σ12

Σ21 Σ22

))

where the ij entry of the submatrix Σ12 is σ12(ij) = κwjσ11(ij) while the ij entry of the

submatrix Σ22 is σ22(ij) = δijgiκwi(κwi − 1) + κ2wiwjσ11(ij).

It is clear that the asymptotic distribution of n1/2{ĥŵ−Eπ(h)} can be found via the standard

delta method. Observe that ĥŵ can be expressed as

ĥŵ =

m
∑

k=1

hkŪk
∑m

l=1 ρklV̄l

/ m
∑

k=1

Ūk
∑m

l=1 ρklV̄l
= f1(Ū , V̄ ), (6)

say. By differentiation we get

∂

∂ui
f1(u,v)

∣

∣

∣

∣

(u,v)=(g,κπ)

= wi{hi − Eπ(h)}

14



and
∂

∂vi
f1(u,v)

∣

∣

∣

∣

(u,v)=(g,κπ)

=
1

κwi
E {w(X1)(hi − Eπ(h))|X0 = i} .

The variance of the asymptotic normal distribution of n1/2{ĥŵ − Eπ(h)} is

σ2
ŵ(h) = ∇ufT

1 Σ11∇uf1 + 2∇ufT
1 Σ12∇vf1 + ∇ufT

1 Σ22∇uf1,

where ∇uf1, ∇vf1 are the vectors containing the derivatives with respect to u, v, respectively,

evaluated at (u,v) = (g, κπ). We will see below that the above expression is in fact as stated in

the theorem. To this end, let us also consider the IS “estimator” ĥIS and evaluate its asymptotic

variance too. After some algebra we get that

ĥIS =

m
∑

k=1

hkŪk
∑m

l=1 ρklπl

/ m
∑

k=1

Ūk
∑m

l=1 ρklπl
= f2(Ū), (7)

say. By (6) and (7) we see that the only difference between the two “estimators” is the replace-

ment of πl by its unbiased estimate κ−1V̄l in ĥŵ. By differentiation we get

∂

∂ui
f2(u)

∣

∣

∣

∣

u=g

= wi{hi − Eπ(h)}.

Since the corresponding variance of the importance sampling estimator is

σ2
IS(h) = ∇ufT

2 Σ11∇uf2 ≡ ∇ufT
1 Σ11∇uf1,

it is clear that

σ2
ŵ(h) − σ2

IS(h) = −2∇ufT
1 Σ12∇vf1 −∇ufT

1 Σ22∇uf1.

Set now A1 = −2∇ufT
1 Σ12∇vf1, A2 = −∇ufT

1 Σ22∇uf1, Bn = w(Xn)h(Xn) for n = 0, 1, . . .,

and bi = wihi, µi = E(B1|X0 = i) for i = 1, . . . ,m. Consider further without loss of generality

that Eπ(h) = 0 and note that under stationarity, it holds that Eπ(h) = Eg(Bn) for all n. Then,

A1 = − 2

m
∑

i=1

m
∑

j=1

bi

(

− µj

κwj

)

κwjσ11(ij)

= − 2
m

∑

i=1

m
∑

j=1

biµj

{

δijgi − gigj + gi

∞
∑

n=1

(g
(n)
ij − gj) + gj

∞
∑

n=1

(g
(n)
ji − gi)

}

= 2

{ m
∑

i=1

biµigi −
m

∑

i=1

bigi

m
∑

j=1

µjgj +

m
∑

i=1

bigi

m
∑

j=1

µj

∞
∑

n=1

(g
(n)
ij − gj)+

m
∑

j=1

µjgj

m
∑

i=1

bi

∞
∑

n=1

(g
(n)
ji − gi)

}

= 2

{ m
∑

i=1

biµigi −
m

∑

i=1

bigi

m
∑

j=1

µjgj +

m
∑

i=1

bigi

∞
∑

n=1

( m
∑

j=1

µjg
(n)
ij −

m
∑

j=1

µjgj

)

+
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m
∑

j=1

µjgj

∞
∑

n=1

( m
∑

i=1

big
(n)
ji −

m
∑

i=1

bigi

)}

.

But
m

∑

i=1

µigi =

m
∑

i=1

E(Bi|X0 = i)gi = Eg{E(B1|X0)} = Eg(B1) = 0

and since X is reversible, i.e., it holds gigij = gjgji and more generally gig
(n)
ij = gjg

(n)
ji for all n,

we conclude that

A1 = 2

{ m
∑

i=1

biµigi + 2

∞
∑

n=1

m
∑

i=1

m
∑

j=1

bigiµjg
(n)
ij

}

.

Moreover,
m

∑

i=1

biµigi =

m
∑

i=1

bi

( m
∑

k=1

bkgik

)

gi = Eg(B0B1)

and for all n, we have that

m
∑

i=1

m
∑

j=1

bigiµjg
(n)
ij =

m
∑

i=1

m
∑

j=1

bigi

( m
∑

k=1

bkgjk

)

g
(n)
ij

=

m
∑

i=1

m
∑

k=1

bibkgi

m
∑

j=1

gjkg
(n)
ij −

m
∑

i=1

m
∑

k=1

bibkgig
(n+1)
ik = Eg(B0Bn+1).

Thus,

A1 = 2Eg(B0B1) + 4
∞
∑

n=1

Eg(B0Bn+1) = 2
∞

∑

n=1

Eg(B0Bn) + 2
∞

∑

n=1

Eg(B0Bn+1). (8)

On the other hand,

A2 = −
m

∑

i=1

m
∑

j=1

(

− µi

κwi

)(

− µj

κwj

)

{

δijgiκwi(κwi − 1) + κ2wiwjσij

}

= −
m

∑

i=1

µ2
i

κ2w2
i

giκwi(κwi − 1)

−
m

∑

i=1

m
∑

j=1

µiµj

{

δijgi − gigj + gi

∞
∑

n=1

(g
(n)
ij − gj) + gj

∞
∑

n=1

(g
(n)
ji − gi)

}

=
m

∑

i=1

µ2
i gi

κwi
− 2

m
∑

i=1

(µi)
2gi −

m
∑

i=1

m
∑

j=1

µiµjgigj

−
m

∑

i=1

µigi

m
∑

j=1

µj

∞
∑

n=1

(g
(n)
ij − gj) −

m
∑

j=1

µjgj

m
∑

i=1

µi

∞
∑

n=1

(g
(n)
ji − gi)

=
m

∑

i=1

µ2
i gi

κwi
− 2

m
∑

i=1

(µi)
2gi −

m
∑

i=1

m
∑

j=1

µiµjgigj

−
∞

∑

n=1

m
∑

i=1

µigi

( m
∑

j=1

µjg
(n)
ij −

m
∑

j=1

µjgj

)

−
∞

∑

n=1

m
∑

j=1

µjgj

( m
∑

i=1

µig
(n)
ji −

m
∑

i=1

µigi

)
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=

m
∑

i=1

µ2
i gi

κwi
− 2

m
∑

i=1

µ2
i gi − 2

∞
∑

n=1

m
∑

i=1

m
∑

j=1

µigiµjg
(n)
ij .

But

m
∑

i=1

µ2
i gi =

m
∑

i=1

( m
∑

k=1

bkgik

)( m
∑

ℓ=1

bℓgiℓ

)

gi =

m
∑

k=1

m
∑

ℓ=1

bkbℓ

m
∑

i=1

gigikgiℓ =

m
∑

k=1

m
∑

ℓ=1

bkbℓgk

m
∑

i=1

gkigiℓ =

m
∑

k=1

m
∑

ℓ=1

bkbℓgkg
(2)
kℓ = Eg(B0B2),

and for all n,

m
∑

i=1

m
∑

j=1

µigiµjg
(n)
ij =

m
∑

i=1

m
∑

j=1

( m
∑

k=1

bkgik

)( m
∑

ℓ=1

bℓgjℓ

)

gig
(n)
ij =

m
∑

k=1

m
∑

ℓ=1

bkbℓ

m
∑

i=1

gigik

m
∑

j=1

gjℓg
(n)
ij =

m
∑

k=1

m
∑

ℓ=1

bkbℓgk

m
∑

i=1

gkig
(n+1)
iℓ =

m
∑

k=1

m
∑

ℓ=1

bkbℓgkg
(n+2)
kℓ = Eg(B0Bn+2).

Hence,

A2 =
m

∑

i=1

µ2
i gi

κwi
− 2Eg(B0B2) − 2

∞
∑

n=1

Eg(B0Bn+2) =
m

∑

i=1

µ2
i gi

κwi
− 2

∞
∑

n=1

Eg(B0Bn+1). (9)

From (8) and (9) we get

σ2
IS(h) − σ2

ŵ(h) = A1 + A2 =

m
∑

i=1

µ2
i gi

κwi
+ 2

∞
∑

n=1

Eg(B0Bn). (10)

By the standard asymptotic theory for Markov chains σ2
IS(h) = Eg(B

2
0) + 2

∑∞
n=1 Eg(B0Bn).

Since Eg(B
2
0) = V arg{w(X0)h(X0)} part (b) of the theorem follows.

(c) In order to compare the two variances note first that the first term of the sum in (10) is

clearly positive. Moreover, we know that
∑∞

n=2 Eg(B0Bn) ≡ ∑∞
n=2 Covg(B0, Bn) > 0 since each

residual sum of autocovariances starting from an even integer is nonnegative (see for example

Geyer, 1992). Thus a sufficient condition for the variances difference to be positive is Eg(B0B1) >

0. This expectation can be expressed as a quadratic form, namely,

Eg(B0B1) =
m

∑

i=1

m
∑

j=1

bibj g̃ij = bT G̃b

where g̃ij = gigij . We will show that in the case of independence MH, the matrix G̃ is nonneg-

ative definite. Indeed, in this case,

g̃ij = gigij =

∑m
k=1 min{qiπk, qkπi}

κ
× min{qiπj , qjπi}

∑m
k=1 min{qiπk, qkπi}

= κ−1 min{qiπj, qjπi}.
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Consider without loss of generality that

q1/π1 6 · · · 6 qm/πm (11)

and set γij = κ−1qiπj . Then clearly g̃ij = γi∧j,i∨j where i ∧ j = min{i, j} and i ∨ j = max{i, j}
so G̃ is nonnegative definite. To see that, proceed by induction to show that all its principal

minors are nonnegative. Let G̃kk denote the matrix consisting of the first k rows and columns of

G̃. Then, |G̃11| ≡ γ1∧1 = κ−1q1π1 > 0. Suppose now that |G̃kk| > 0 for some k > 1. In order to

prove that |G̃k+1,k+1| > 0, multiply the k-th row of G̃k+1,k+1 by πk+1/πk and subtract it from

the (k + 1)-th. Then the resulting matrix has all last row’s elements equal to zero except from

the last one which is κ−1qk+1πk+1−κ−1qkπ
2
k+1/πk = κ−1π2

k+1(qk+1/πk+1 − qk/πk). By (11) this

quantity is nonnegative thus, |G̃k+1,k+1| = κ−1π2
k+1(qk+1/πk+1 − qk/πk)|G̃kk| > 0.
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