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1 Introdu
tionA random variable X is said to follow the exponential distribution with parameter# > 0, if its 
umulative distribution fun
tion isF (x) = 1� e�x=#; x > 0= 0 ; x < 0 ;and the 
orresponding probability density fun
tion isf(x) = #�1e�x=#; x > 0= 0 ; x < 0 : (1.1)Next to the normal distribution, the exponential distribution is possibly the mostwidely referen
ed 
ontinuous probability law. It appears as a textbook or an in{
lass example in introdu
tory probability and statisti
s 
ourses, and 
onstitutes theA and B of reliability and life testing. There exist numerous 
hara
terizations ofthe exponential distribution, most of them based on the \la
k of memory" and the\
onstant hazard rate" properties. The la
k of memory property states that theexponential is the only law satisfying, �F (x + y) = �F (x) �F (y), for all x; y > 0, where�F (�) = 1 � F (�). The 
onstant hazard rate property states that the exponential isthe only law for whi
h the hazard rate f(x)= �F (x) is 
onstant (independent of x).There are many other 
hara
terizations of the exponential model depending on orderstatisti
s, regression et
. The reader is referred to the monographs of Galambos andKotz (1978) and Azlarov and Volodin (1986) for a 
omplete list of 
hara
terizations,and to Johnson et al. (1994), 
hapter 19, for some more re
ent work.The 
hara
teristi
 fun
tion (
f ) '(t), is de�ned as'(t) = E �eitX� = Z 1�1 eitxf(x)dx = C(t) + iS(t) ; i = p�1 ; (1.2)for real t. In (1.2), C(t) = E (
os tX) denotes the real part and S(t) = E (sin tX)denotes the imaginary part of '(t). In Se
tion 2 we present two 
hara
terizationsthat involve the 
f. The �rst depends on the ratio S(t)=C(t) and the se
ond relatesthe squared modulus of the 
f to C(t). 2



2 The Chara
terizationsFor the exponential density in (1.1), we easily 
al
ulate the 
f from (1.2) as'(t) = C(t) + iS(t) = 11 + #2t2 + i #t1 + #2t2 : (2.1)Hen
e we have for some # > 0,S(t) = #tC(t) ; for all t : (2.2)That is to say the ratio S(t)=C(t) (we assume that C(t) 6= 0), is a straight line (in t)through the origin with positive slope #. We will prove that under some 
onditions,(2.2) implies exponentiality.Cs�org}o and Heath
ote (1982) proved that for symmetri
 distributions and for someÆ 2 R, S(t) = tan(Æt)C(t) ; for all t : (2.3)By 
omparing (2.2) and (2.3) one 
on
ludes that (2.2) 
an not be true for any sym-metri
 distribution. Consequently one maybe tempted to prove that (2.2) impliesexponentiality in the entire 
lass of distributions over the whole real line. Howeverthis is not true as the following 
ounterexample shows.For 0 < p < 1 
onsider the densityf(x) = (1� p)#�1e�x=#I[0;1)(x) + p (2#)�1e�jxj=# ;that is a mixture of an exponential with a zero-mean Lapla
e density, both with
ommon s
ale # > 0. Then one 
an easily 
al
ulate the 
f of f(�) as'(t) = 11 + #2t2 + i(1� p)#t1 + #2t2 :Hen
e this density has the property (2.2) with # repla
ed by (1� p)#.Our next step is to assume that P(X > 0) = 1. Then we have the following.Theorem. Among all 
ontinuous non{negative random variables whi
h possess smoothdensities with �nite limit as x ! 0+ and absolutely integrable derivatives, the expo-nential random variable is the only one for whi
h (2.2) holds.3



Proof. Division by # in (2.2) yields,#�1 Z 10 sin(tx)f(x)dx = tZ 10 
os(tx)f(x)dx :Then apply integration by parts to the right hand side of the last equality to get (allderivatives are with respe
t to x),tZ 10 
os(tx)f(x)dx = Z 10 (sin(tx))0f(x)dx= sin(tx)f(x)���10 � Z 10 sin(tx)f 0(x)dx= �Z 10 sin(tx)f 0(x)dx :Hen
e for all t, Z 10 [#�1f(x) + f 0(x)℄ sin(tx)dx = 0 :The left hand side of the last equality is a \s
aled" Fourier Sine Transform of thefun
tion #�1f(x) + f 0(x). From a well known inversion formula (Fedoryuk, 1989) we
on
lude that for every x, f(x) + #f 0(x) = 0. The last di�erential equation has asunique solution the exponential density in (1.1), and we are done.An Additional Chara
terizationFrom (2.1) one 
an also see thatj'(t)j2 = C2(t) + S2(t) = C(t) ; for all t : (2.4)That is, the squared modulus and the real part of the 
f 
oin
ide in the exponentialdistribution 
ase. If the distribution is degenerate at zero we have '(t) � C(t) � 1and hen
e (2.4) trivially holds. Also if X = 0 or Æ (Æ 2 R), with equal probability1=2, then again the 
f of X satis�es (2.4). Let us rephrase (2.4) in a distributionallanguage. Let X and Y be iid with 
f '(t). Then j'(t)j2 is the 
f of the randomvariable Z = X � Y . Also let W = X or �X with equal probability 1=2. ThenC(t) is the 
f of W . But, as it was suggested by a referee, the distributional equalityZ d= W implies (under the 
ondition of X being non{negative and non{latti
e) thatX is exponentially distributed (refer to Rossberg, 1972, and Johnson et al., 1994,p.545). 4



Statisti
al appli
ations of the 
hara
terizations will very naturally be based onthe empiri
al 
f whi
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