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Abstract

Two characterizations of the exponential distribution among distributions
with support the nonnegative real axis are presented. The characterizations are
based on certain properties of the characteristic function of the exponential ran-
dom variable. Counterexamples concerning more general possible versions of the

characterizations are given.
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1 Introduction

A random variable X is said to follow the exponential distribution with parameter

9 > 0, if its cumulative distribution function is

Fz) = 1—e%7 23>0

= 0, z <0,
and the corresponding probability density function is

floy = e (L)
= 0, z<0.

Next to the normal distribution, the exponential distribution is possibly the most
widely referenced continuous probability law. It appears as a textbook or an in—
class example in introductory probability and statistics courses, and constitutes the
A and B of reliability and life testing. There exist numerous characterizations of
the exponential distribution, most of them based on the “lack of memory” and the
“constant hazard rate” properties. The lack of memory property states that the
exponential is the only law satisfying, F(z +y) = F(z)F(y), for all z,y > 0, where
F(:) =1 — F(-). The constant hazard rate property states that the exponential is
the only law for which the hazard rate f(z)/F(z) is constant (independent of x).
There are many other characterizations of the exponential model depending on order
statistics, regression etc. The reader is referred to the monographs of Galambos and
Kotz (1978) and Azlarov and Volodin (1986) for a complete list of characterizations,

and to Johnson et al. (1994), chapter 19, for some more recent work.

The characteristic function (c¢f) ¢(t), is defined as
p(t) = E (%) :/ e f(x)dr = O(t) +iS(t) , i =v—1, (1.2)

for real t. In (1.2), C'(t) = E(costX) denotes the real part and S(t) = E(sin ¢X)
denotes the imaginary part of ¢(¢). In Section 2 we present two characterizations
that involve the cf. The first depends on the ratio S(¢)/C(t) and the second relates
the squared modulus of the cf to C(¢).



2 The Characterizations

For the exponential density in (1.1), we easily calculate the ¢f from (1.2) as

1 It
= ) = ) . 2.1
o(t) = C(t) +15(t) e + i7 P (2.1)
Hence we have for some 9 > 0,
S(t) = 9tC(t) , for all ¢ . (2.2)

That is to say the ratio S(t)/C(t) (we assume that C(t) # 0), is a straight line (in ¢)
through the origin with positive slope 9. We will prove that under some conditions,
(2.2) implies exponentiality.
Csorgé and Heathcote (1982) proved that for symmetric distributions and for some
0 € R,
S(t) = tan(dt)C(t) , for all ¢ . (2.3)

By comparing (2.2) and (2.3) one concludes that (2.2) can not be true for any sym-
metric distribution. Consequently one maybe tempted to prove that (2.2) implies
exponentiality in the entire class of distributions over the whole real line. However

this is not true as the following counterexample shows.

For 0 < p < 1 consider the density
f(:l?) = (1 — p) 79*16790/19][0700)(33) +p(279)7167|a:|/19 ’

that is a mixture of an exponential with a zero-mean Laplace density, both with
common scale ¢ > 0. Then one can easily calculate the cf of f(-) as

1 (1 —p)ot
t) = .
o0 =T YT

Hence this density has the property (2.2) with ¢ replaced by (1 — p)¥.
Our next step is to assume that P(X > 0) = 1. Then we have the following.

Theorem. Among all continuous non—negative random variables which possess smooth
densities with finite limit as x — 0T and absolutely integrable derivatives, the expo-

nential random variable is the only one for which (2.2) holds.



Proof. Division by ¢ in (2.2) yields,

1 R . o
9 /0 sin(tx) f(x)dx = t/o cos(tz) f(z)dx .

Then apply integration by parts to the right hand side of the last equality to get (all

derivatives are with respect to z),
t/o cos(tz)f(x)dx = /0 (sin(tz)) f(z) dx
= sin(tx)f(x)‘zo—/o sin(tz) f'(z) dx
= — /00 sin(tz) f'(z) dz .
0

Hence for all ¢,
/ W1 (2) + f(2)] sin(tz) dz = 0 .
0

The left hand side of the last equality is a “scaled” Fourier Sine Transform of the
function 9~' f(x) + f'(x). From a well known inversion formula (Fedoryuk, 1989) we
conclude that for every z, f(z) + 9f'(z) = 0. The last differential equation has as

unique solution the exponential density in (1.1), and we are done. O

An Additional Characterization

From (2.1) one can also see that
lp(t)|> = C*(t) + S%(t) = C(t) , forall t . (2.4)

That is, the squared modulus and the real part of the cf coincide in the exponential
distribution case. If the distribution is degenerate at zero we have p(t) = C(t) = 1
and hence (2.4) trivially holds. Also if X = 0 or § (§ € R), with equal probability
1/2, then again the c¢f of X satisfies (2.4). Let us rephrase (2.4) in a distributional
language. Let X and Y be iid with cf ¢(¢). Then |o(t)]? is the cf of the random
variable Z = X — Y. Also let W = X or —X with equal probability 1/2. Then
C(t) is the cf of W. But, as it was suggested by a referee, the distributional equality
zLw implies (under the condition of X being non-negative and non-lattice) that
X is exponentially distributed (refer to Rossberg, 1972, and Johnson et al., 1994,
p.545).



Statistical applications of the characterizations will very naturally be based on
the empirical ¢f which, given the random sample X1, Xs, ..., X,,, is defined as ¢, (t) =
n! > j=1exp (itX;). The reader is referred to Henze and Meintanis (2000a) (resp.
Henze and Meintanis (2000b)), for goodness—of-fit tests to the exponential distribu-
tion based on (2.2) (resp. (2.4)) and ¢, (+).

References

Azlarov, T.A. and Volodin, N.A. (1986). Characterization Problems Associated with
the Exponential Distribution. Springer-Verlag, New York Inc.

Csorgd, S. and Heathcote, C.R. (1982). Some Results Concerning Symmetric Dis-
tributions. Bull. Austral. Math. Soc., 25, 327-335.

Fedoryuk, M.V. (1989). Integral Transforms. In: Analysis I: Integral representations
and asymptotic methods, Gamkrlidze, R.V. (ed.), Encyclopedia of Mathematical
Sciences, Vol. 13, 193-232, Springer-Verlag, Berlin.

Galambos, J. and Kotz, S. (1978). Characterizations of Probability Distributions,
Lecture Notes in Mathematics 675, Springer-Verlag, Berlin.

Henze, N. and Meintanis, S.G. (2002a). Goodness—of-Fit Tests Based on a New
Characterization of the Exponential Distribution. Commun. Statist. Theory Meth.,
31, 1479-1497.

Henze, N. and Meintanis, S.G. (2002b). Omnibus Tests for Exponentiality Based
on the Empirical Characteristic Function, Reprint der Facultat fir Mathematik,

02/3, Universitat Karlsruhe.

Johnson, N.L., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Dis-
tributions, Vol. 1. J. Wiley & Sons Inc., New York.

Rossberg, H.J. (1972). Characterization of the Exponential and the Pareto Distri-
butions by Means of Some Properties of the Distributions which the Differences
and Quotients of Order Statistics are Subject to. Math. Operationsforsch.
Statistik, 3, 207-216.



