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Abstract

We present a simulation method which is based on discretization of the state space of
the target distribution (or some of its components) followed by proper weighting of the
simulated output. The method can be used in order to simplify certain Monte Carlo and
Markov chain Monte Carlo algorithms. Its main advantage is that the autocorrelations of the
weighted output almost vanish and therefore standard methods for iid samples can be used
for estimating the Monte Carlo standard errors. We illustrate the method via toy examples
as well as the well-known dugongs and Challenger datasets.
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1 Introduction

Let π be a (possibly multidimensional) distribution with support X . Suppose that we wish to

generate random variates from π and/or to calculate expectations of the form

Eπ(h) =

∫

X
h(x)π(dx)

for h ∈ L1(π), that is, satisfying Eπ(|h|) < ∞. As the dimension of X increases, handling

such problems becomes more difficult. For this purpose, many Monte Carlo (MC) and Markov

chain Monte Carlo (MCMC) methods have been developed. A well-documented presentation of

several MC and MCMC methods can be found in Robert and Casella (2004).

In this paper we discuss a simple approach which can be adopted in order to easily handle

problems as calculating expectations as well as simulating approximate samples from a target

distribution. Similarly to other standard simulation methods, it requires only the knowledge of

the functional form of the target density (i.e., to be known up to a normalizing constant). This

is usually the case in many situations as for example in Bayesian modeling with nonconjugate

prior distributions. The approach is based on discretization of the state space X (or some of its

components) combined with the proper weighting of the output.
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Roughly speaking, “discretization” of a continuous random variable means partition of

its support into a finite number of subsets followed by the introduction of another continu-

ous random variable having constant probability density function (pdf) over each element of

the partition. Then, under some appropriate conditions, the simulation of the original ran-

dom variable may be replaced by simulation of its “discretized” version which is in general

a much easier procedure. A discretization can be random or deterministic. For instance, Fu

and Wang (2002) proposed a random discretization of a bounded support. More specifically,

they discretized a bounded set of the form (α, β)k into m contours by using nmk indepen-

dent draws from the uniform distribution on (α, β). Every k successive observations were

combined and were treated as an observation in (α, β)k. So, they produced nm indepen-

dent identically and uniformly distributed observations on (α, β)k. They ordered the obser-

vations according to the height of the target density so that each contour contains n of the

ordered observations and then simulated from the discretized distribution. Sainudiin and York

(2006) proposed a deterministic discretization of the state space X in order to improve effi-

ciency in Moore rejection sampler. Moreover, they proposed an adaptive partition of X by

bisecting a properly chosen contour along the side with the maximal diameter, for further

increasing the acceptance probability. There are several ways of choosing the proper con-

tour, such as the contour with the largest volume or the contour with the largest diameter

for its range enclosure. Liang, Liu and Carroll (2007) partitioned the sample space X into

m contours according to the energy function U(x) = − log π(x) in order to form the subsets

E1 = {x : U(x) 6 u1} , . . . , Ei = {x : ui−1 < U(x) 6 ui} , . . . , Em = {x : U(x) > um−1}, where

u1, . . . , um−1 are prespecified real numbers, and then used the Stochastic Approximation Monte

Carlo Importance Sampling algorithm in order to sample from the target distribution π. Neil,

Tailor and Marquez (2007) proposed a dynamic discretization of the state space X in order

to approximate the true pdf π by the resulting discretized density g to an acceptable level of

accuracy. They constructed a sequence of discretizations of X iteratively and at each step they

tested if g has converged to π using a bound on their Kullback–Leibler divergence, called the

entropy error. If the goal is not achieved, the procedure continues by splitting into two halves the

highest entropy error interval and merging the consecutive intervals having the lowest entropy

error or the ones that have zero mass.

In this paper, we propose a discretization in a deterministic way. First, we partition the

support (or some of its components) into a predefined finite number of subsets. Then we si-

mulate observations from the discretized version of the target distribution and we additionally

weight them properly by assigning certain importance weights. Finally, we associate a jump

process with the weighted sequence. Malefaki and Iliopoulos (2008) have already proven that

this process converges weakly to the target distribution. We use the method in order to sim-

plify certain MCMC algorithms. Interestingly, this approach seems to reduce considerably the
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autocorrelations within the Markov sequence. This allows us to obtain quite accurate estimates

of the Monte Carlo standard errors.

The rest of the paper is organized as follows. In Section 2, we define the notion of a simple

distribution and we discuss a two-state procedure in order to sample from it. In Section 3,

we give the definition of the jump process associated with properly weighted sequences, recall

some already known results and describe our method explicitly. In Section 4, we illustrate the

method using some toy examples as well as the well–known dugongs and Challenger datasets.

We conclude the paper with a short summary. Finally, an appendix contains some technical

details concerning the finiteness of the weights’ variances in dugongs and Challenger datasets.

2 Discretization of the state space

Let π be a continuous distribution with support X which is known up to a normalizing constant.

The first step of our approach is the replacement of π by a discretized version of it, that is, a

“similar” simple distribution.

Definition 2.1. [Simple Distribution] Let E = (E1, . . . , Em) be a measurable partition of

the set X . Any continuous distribution with constant pdf over each Ei will be called simple

with respect to the partition E .

In light of the above definition, let E = (E1, . . . , Em) be a (Lebesgue) measurable partition of

the state space X of π. To avoid trivialities, assume that L(Ei) > 0 for all i, where L(E) denotes

the Lebesgue measure of the set E. Choose points {x∗
1, . . . , x

∗
m} such that for all i = 1, . . . ,m,

x∗
i ∈ Ēi (the boundary of Ei) with π(x∗

i ) > 0. Then, for our target distribution π, the simple

distribution

g(x) ∝
m

∑

i=1

π(x∗
i )

L(Ei)
I(x ∈ Ei), (1)

is a discretization of π corresponding to the set {(Ei, x
∗
i )}

m
i=1. For instance, if X = (α, β) for

some −∞ < α < β < ∞ (i.e., a bounded subset of R), a quite convenient discretization comes

out by taking Ei =
(

α + i−1
m (β − α), α + i

m(β − α)
]

and x∗
i = α + i−1/2

m (β − α), that is, the

midpoint of Ei, i = 1, . . . ,m. Then, the corresponding discretization of π becomes

g(x) ∝
m

∑

i=1

π(x∗
i )I(x ∈ Ei), (2)

since L(Ei) ≡ (β − α)/m for all i.

Note that Kozlov and Koller (1997) prove that the optimal —in terms of the Kullback–

Leibler divergence— value of the simple distribution g in the subregion Ei is
∫

Ei
π(x)dx/L(Ei).

However, in many cases this integral is quite difficult or even infeasible to be calculated exactly.

For instance, this is the case when π is known up to a normalizing constant. So, in practice it
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is more convenient to construct the simple distribution using suitable representative points x∗
i ,

such as the midpoints of the intervals or some local extrema of π.

In general, simulation from g in (1) can be carried out via the following simple two-stage

procedure. First, the set Ei is chosen with probability proportional to π(x∗
i )/L(Ei) and then x

is drawn uniformly in Ei. Fu and Wang (2002) use this two-stage procedure in order to obtain

a sample from g and estimate an expectation of interest with respect to π. More specifically, let

x1, x2, . . . , xn be an iid sequence from g. They prove that for any function h ∈ L1(π) it holds

lim
n,m↑∞

1

n

n
∑

i=1

h(xi)
p

−→ Eπ(h) =

∫

X
h(x)π(x)dx. (3)

As m increases, π is approximated better by g and the resulting estimators become more accu-

rate. Fu and Wang (2002) also state that a value of m between 200 and 500 for a density of less

than five dimensions and a value between 1000 and 100000 for a density of higher dimensions

provides satisfactory results. On the contrary, our method needs significantly less number of

subsets. Moreover, since the sample which is drawn from g is properly weighted with respect

to π as it is presented in the next section, it converges in a sense to the target distribution π.

This is actually true for the jump process associated with the weighted sample. Consequently,

this method gives satisfactory results even if m is fairly small.

3 Jump processes associated with weighted sequences

The main principle of our approach is that of properly weighted samples. At first, properly

weighted samples were introduced by Liu and Chen (1998) as a generalization of the standard

importance sampling (IS) method. An equivalent and more convenient definition which is given

also by Liu (2001), says that a set of weighted random samples (Xi, ξi)16i6n is called proper

with respect to π if

E{ξi|Xi = x} = κπ(x)/g(x), for i = 1, . . . , n,

for some positive constant κ, where Xi ∼ g. Malefaki and Iliopoulos (2008) defined the jump

process which is associated with a weighted random sequence as follows:

Definition 3.1. For a weighted sequence (Xn, ξn)n∈Z+
:= ((X0, ξ0), (X1, ξ1), . . .), where the ξ’s

are strictly positive weights, define S0 = 0, Sn =
∑n−1

i=0 ξi, n > 1, and let

Nt := sup{n : Sn 6 t}, t > 0.

Then, the stochastic process Y = (Yt)t>0 defined by Yt := XNt , t > 0, is called the jump process

associated with the weighted sequence (Xn, ξn)n∈Z+
.

Assume now that the sequence X = (Xn)n∈Z+
is a homogeneous Harris ergodic Markov chain

with state space (X ,B(X )) having invariant probability distribution g and the distribution of
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ξn depends solely on Xn with E{ξn|Xn = x} = κw(x) = κπ(x)/g(x) for some κ > 0. Then, for

the jump process (Yt)t>0 associated with the weighted sequence (Xn, ξn)n∈Z+
it holds that

lim
t↑∞

P{Yt ∈ A} = π(A), ∀ A ∈ B(X ).

This fact follows from the standard theory of semi–Markov processes (cf. Limnios and Oprişan,

2001), since under the above assumptions, Y is a semi–Markov process with limit distribution

π.

In the sequel we will concentrate on the special case ξn ≡ w(Xn), that is, when the output

of the Markov chain is deterministically weighted by the importance ratios. As it is shown in

Malefaki and Iliopoulos (2008), in cases where the function w(x) is known (up to a constant)

there is no reason to consider random weights at all since the deterministic weights minimize

the variances of the Monte Carlo estimators.

Working along the lines of the above approach, we are allowed to run more convenient MC or

MCMC algorithms with a different target distribution g and then properly weight the outputs.

For instance, in the standard Gibbs sampling setup, g could be a modified target distribution of

which all full conditional distributions are easily handled. In any case, after properly weighted,

the generated sample can be associated with the realization of a converging jump process.

Summarizing, our method consists of the following steps:

1. Discretize the state space (or some of its components) deterministically into a predefined

finite number of subsets. In case the components to be discretized have unbounded sup-

port, apply suitable transformations to them in order to achieve this requirement (see for

example Subsection 4.4).

2. Simulate an ergodic Markov chain with limit distribution the discretized version g of π.

3. After finishing the simulations, weight the simulated output x1, . . . , xn using the corre-

sponding importance weights, that is, weight xi by w(xi) ∝ π(xi)/g(xi), i = 1, . . . , n.

4. Treat the weighted sample (x1, w(x1)), . . . , (xn, w(xn)) as a sample from the original target

distribution π (possibly after discarding an initial part as a burn-in period).

The validity of Step 4 follows from the fact that the jump process (yt)t>0 associated with the

weighted sample (xi, w(xi))16i6n converges weakly to π. For example, setting T =
∑n

i=1 w(xi),

the expectation Eπ(h) can be estimated by

1

T

∫ T

0
h(yt)dt ≡

∑n
i=1 w(xi)h(xi)
∑n

i=1 w(xi)
.

Moreover, with x(1) 6 · · · 6 x(n) denoting the ordered observations, the upper α quantile of π

can be estimated by x(k) where k satisfies
∑n

i=k+1 w(x(i))/T < α 6
∑n

i=k w(x(i))/T . Note also
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that Step 2 covers the case of iid sampling from g as well, since any iid sequence forms trivially

a Markov chain. In fact, in this case the method is the original importance sampling with all its

pros and cons; the only difference is that, by considering the jump process associated with the

importance weighted sample, importance sampling is broadened to a more general simulation

algorithm (see also Malefaki and Iliopoulos, 2008).

In the sequel, we will refer to the original simulated output x1, . . . , xn as unweighted sample

and to the same values after weighted by their importance weights as weighted sample. Once

more, we stress out that the target distribution of the unweighted sample is the simple distri-

bution g whilst the target distribution of the jump process associated with the weighted sample

(and in this sense of the weighted sample itself) is π.

In the next section we illustrate our approach by first presenting a couple of toy examples

and then applying it to two real datasets which serve often as benchmark in Computational

Bayesian Statistics.

4 Illustrative examples

4.1 Beta distribution

Consider the Beta(2, 2) pdf,

π(x) ∝ x(1 − x), 0 6 x 6 1.

We discretize the interval [0, 1] into m = 10 equal length bins and choose as target distribution

the discretized version of π

g(x) ∝ x[m](1 − x[m]), 0 6 x 6 1,

where x[m] = (2 ⌊mx⌋ + 1) /2m. In order to sample from g, we first draw a bin from the discrete

distribution

p(i) ∝

(

2i − 1

2m

)(

1 −
2i − 1

2m

)

, i = 1, . . . ,m,

and then simulate u ∼ U(0, 1) and set x = (u + i − 1)/m. Let w(x) = π(x)/g(x). The weighted

sample (xn, w(xn))n>1 is proper with respect to π, so the jump process associated with the

weighted output converges to π. At this point we should note that, in this particular example,

the proposed method does not require a large m in order to achieve convergence. In Figure 1

we can notice the distributional convergence to the target distribution (the histogram of the

weighted sample fits almost perfectly to its pdf) as well as the fast convergence of the weighted

mean x̂IS
n =

∑

w(xi)xi/
∑

w(xi) to the mean of the distribution. For comparison purposes we

have also simulated a random sample from the target distribution. In Figure 1 we can see the

convergence of the corresponding sequence of the sample means as well. Observe that x̂IS
n does

not behave worse than the mean of a random sample from the target distribution. Moreover,
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Figure 1: Histogram of the weighted sample (xi, w(xi))16i610000 and convergence of the weighted
mean x̂IS

n =
∑

w(xi)xi/
∑

w(xi) for m = 10 (solid line) and of the sample mean of an iid sample
from the target distribution (dashed line).

Percentile .05 .10 .25 .50 .75 .90 .95

True value .1354 .1958 .3264 .5000 .6736 .8042 .8646
Estimated .1317 .1932 .3283 .5022 .6786 .8031 .8641

Table 1: True and estimated percentiles of Beta(2, 2) distribution.

in Table 1 we present the estimates of selected percentiles of the target distribution along with

their corresponding true values. We can observe that the estimated values using the proposed

method are very close to the true ones.

4.2 Dirichlet distribution

Let the target distribution be the two dimensional Dirichlet distribution D(α, β; γ) with pdf

π(x) ≡ π(x1, x2) ∝ xα−1
1 xβ−1

2 (1 − x1 − x2)
γ−1, 0 6 x1, x2, x1 + x2 6 1.

Here, the state space is the orthogonal triangle with vertices the origin and the points (0, 1) and

(1, 0).

Two particular discretizations of the state space could be the following. Split first the

original orthogonal triangle into M = m2 smaller equal orthogonal triangles with area 1/(2m2)

as follows. Divide each of the axes into m equal length intervals and draw from their endpoints

all lines parallel to the axes. Finally, draw the lines connecting the points (i/m, 0) and (0, i/m),

i = 1, . . . ,m − 1. For this partition of the state space we choose as representative points

x[m1],i =
2i − 1

2m
, x[m2],jk =

j + 3(k − 1)

3m
,

for i = 1, . . . ,m, j = 1, 2 and k = 1, . . . ,m− i− j +2 (see Figure 2(a)). Then, the corresponding
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(a) (b)

Figure 2: The two alternative discretizations of the state space of Dirichlet distribution.

simple distribution takes the form

g(x) ∝
∑

i,j,k

xα−1
[m1],ix

β−1
[m2],jk(1 − x[m1],i − x[m2],jk)

γ−1I(x ∈ Eijk),

where Eijk is the triangle containing the point (x[m1],ix[m2],jk). In order to simulate from g, a

triangle is selected with probability proportional to

p(i, j, k) ∝ xα−1
[m1],ix

β−1
[m2],jk(1 − x[m1],i − x[m2],jk)

γ−1

and then (x1, x2) is drawn uniformly on Eijk.

Alternatively, we can divide the original triangle into m triangles as before and m(m + 1)/2

squares having double area of the triangles. In this case, we select as representative points

x[m1],i =
2i − 1

2m
, x[m2],j =

3(j − 1) + 1

3m
,

for i = 1, . . . ,m, j = 1, . . . ,m − i + 1 (see Figure 2(b)). Since now the areas of triangles and

squares differ, the corresponding simple distribution g takes the form

g(x) ∝
∑

i,j

L(Eij)
−1xα−1

[m1],ix
β−1
[m2],j(1 − x[m1],i − x[m2],j)

γ−1I(x ∈ Eij)

where L(Eij) = {I(i + j 6 m) + I(i + j = m + 1)/2}m−2 is the area of Eij.

The results obtained using both partitioning methods were similar. In Figure 3, the corre-

sponding histograms of the weighted samples (x1,i, w(x1,i))16i6n and (x2,i, w(x2,i))16i6n clearly

illustrate the distributional convergence of the jump process to the target distribution of (X1,X2),

where (X1,X2) ∼ D(2, 3, 4), n = 10000, m = 15. Furthermore, the right graphs show the fast

convergence of the weighted means x̂1
IS
n =

∑

w(x1,i)x1,i/
∑

w(x1,i) and x̂2
IS
n =

∑

w(x2,i)x2,i/
∑

w(x2,i). Similarly to the previous example, we have included in Figure 3 the sequences of the
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Figure 3: Histogram of the weighted sample (x1,i, w(x1,i))16i610000 and (x2,i, w(x2,i))16i610000

with m = 15 and the convergence of x̂1
IS
n =

∑

w(x1,i)x1,i/
∑

w(x1,i) and x̂2
IS
n =

∑

w(x2,i)x2,i/
∑

w(x2,i) and of the sample means of an iid sample from the target distribu-
tions (dashed line).

sample means obtained by an iid sample from the target distribution. Upon inspection, we may

conclude that the rates of convergence of the iid-case sample mean and the weighted mean are

comparable.

We can work in a similar way in higher dimensions. For example, consider the state space of

the three dimensional Dirichlet distribution (X1,X2,X3) ∼ D(α1, α2, α3;α4) which is a pyramid

with vertices the origin of the axes and the points (1, 0, 0), (0, 1, 0), (0, 0, 1). Working among

the lines of the above approach, the state space can be partioned in m(m + 1)/2 pyramids,

m(m − 1)/2 polyhedra which are cubes without the grooved pyramid and m(m − 1)(m − 2)/6

cubes. Choosing appropriate points in the interior of these three-dimensional shapes we can

easily simulate from the corresponding discretization of the target distribution. Note that in

this case, L(Ei) denotes the volume of the set Ei, i = 1, . . . ,M = m(m + 1)(m + 2)/6.

4.3 Dugongs dataset

The dugongs dataset is among the standard WinBUGS examples and has been used by many

authors in order to illustrate and compare several sampling techniques. Initially, it was analyzed

by Ratkowsky (1983). The data consist of length (y) and age (x) measurements for n = 27
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xi 1.0 1.5 1.5 1.5 2.5 4.0 5.0 5.0 7.0 8.0 8.5 9.0 9.5 9.5
yi 1.80 1.85 1.87 1.77 2.02 2.27 2.15 2.26 2.35 2.47 2.19 2.26 2.40 2.39
xi 10.0 12.0 12.0 13.0 13.0 14.5 15.5 15.5 16.5 17.0 22.5 29.0 31.5
yi 2.41 2.50 2.32 2.43 2.47 2.56 2.65 2.47 2.64 2.56 2.70 2.72 2.57

Table 2: Dugongs dataset.

dugongs (sea cows) captured near Townsville, Queensland. The complete dataset is shown in

Table 2.

Carlin and Gelfand (1991) modeled the data using a nonlinear growth curve with no inflection

point and an asymptote as x tends to infinity. More specifically, they assumed that

yi ∼ N (α − βγxi , τ−1), i = 1, . . . , n,

where α, β, τ > 0 and 0 < γ < 1. They then proceed using a noninformative prior for the

parameters, namely, π(α, β, γ, τ) ∝ τ1/2α−1.

The data have been also analyzed by Sahu and Zhigljavsky (2003) who adopted vague priors

similar to the default ones used in WinBUGS. However, these particular priors do not take into

account the restrictions α, β > 0. Malefaki and Iliopoulos (2008) analyzed the data as well but

assuming the correct parameter space. They chose as prior distribution,

α ∼ N (0, τ−1
α )I(α > 0), β ∼ N (0, τ−1

β )I(β > 0), γ ∼ U(0, 1), τ ∼ G(k, k),

with τα = τβ = 10−4 and k = 10−3. Note that apart from the parameter constraints these are

the same priors considered by Sahu and Zhigljavsky (2003). Then, the posterior distribution of

θ = (α, β, γ, τ),

π(θ|data) ∝ f(data|θ)f(α)f(β)f(γ)f(τ)

∝ τn/2+k−1 exp

{

−
τ

2

∑n
i=1(yi − α + βγxi)2

}

×

exp

(

− τk −
ταα2

2
−

τββ2

2

)

I(α > 0, β > 0, τ > 0, 0 < γ < 1),

can be evaluated using the output of a suitable Gibbs sampler, so the full conditional distribu-

tions of the parameters are needed. Sampling from the full conditional (posterior) distributions

of α, β (truncated normals) and τ (gamma) is a straightforward task but this is not the case

for γ. Instead of using a Metropolis step, we can adopt the proposed strategy. We choose a

different target distribution, namely, g(θ|data) by discretizing the sample space of γ, i.e., the

interval (0, 1) into m equal length bins and take γ to be uniformly distributed within each bin.
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The form of the new target distribution is

g(θ|data) ∝ f(data|α, β, γ[m], τ)f(α)f(β)f(γ)f(τ)

∝ τn/2+k−1 exp

{

−
τ

2

∑n
i=1(yi − α + βγxi

[m])
2

}

×

exp

(

− τk −
ταα2

2
−

τββ2

2

)

I(α > 0, β > 0, τ > 0, 0 < γ < 1),

where γ[m] is the point that the maximum of π(θ|data) with respect of γ is achieved in each

bin. These particular choice guarantees that the importance weights have finite variance (for

the proof see in the Appendix). Note that Malefaki and Iliopoulos (2008) had chosen as γ[m]

the middle point of each internal but this choice does not ensure the finiteness of the weights’

variance.

With g as target distribution, sampling from the full conditional distribution of γ is now an

easy task. One can first draw a bin from the discrete distribution

p(j|α, β, τ,data) ∝ g(α, β, γ[j], τ |data), j = 1, . . . ,m,

and then simulate u ∼ U(0, 1) and set γ = (j+u−1)/m. The values of the other parameters can

be simulated as usual. At each iteration, the importance weight assigned to the whole parameter

vector θ = (α, β, γ, τ) is

w(θ) ∝
π(θ|data)

g(θ|data)
=

f(data|α, β, γ, τ)

f(data|α, β, γ[m], τ)
.

Then, the jump process associated with the weighted output converges to π.

We took m = 5 and ran 20000 iterations of the corresponding Gibbs sampler after an

additional burn-in period of 5000 iterations. Figure 4 shows the histogram and the autocorre-

lations of the unweighted and weighted samples of the parameters as well as the convergence

of the weighted means α̂IS
n =

∑n
i=1 w(θi)αi/

∑n
i=1 w(θi), β̂IS

n =
∑n

i=1 w(θi)βi/
∑n

i=1 w(θi) and

γ̂IS
n =

∑n
i=1 w(θi)γi/

∑n
i=1 w(θi) to the posterior means E{α|data}, E{β|data} and E{γ|data},

respectively.

The most interesting feature arising from the above weighted scheme is that the autocorre-

lations almost vanish (see Figure 4). This indicates that the Monte Carlo standard errors could

be possibly estimated using methods based on iid samples. In order to confirm that, we ran 50

independent chains with total length 25000 each. After a burn-in period of 5000 iterations, we

estimated for each chain the standard errors for α̂IS
n , β̂IS

n and γ̂IS
n using the formula for the vari-

ance of the ratio estimator in the case of independent samples. The averages of these estimates

were found to be 0.0010 for α̂IS
n , 0.00135 for β̂IS

n and 0.0004 for γ̂IS
n . We also estimated the

same standard errors using the 50 (independent) estimates of the posterior means, (α̂IS
n,i)(16i650),

(β̂IS
n,i)(16i650) and (γ̂IS

n,i)(16i650). The corresponding estimates were 0.0017, 0.00133 and 0.0007
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Figure 4: Histograms, convergence of the weighted means α̂IS
n , β̂IS

n and γ̂IS
n and autocorrelations

of the unweighted samples (αi)16i620000, (βi)16i620000 and (γi)16i620000 and of the weighted
samples (αi, w(θi))16i620000, (βi, w(θi))16i620000 and (γi, w(θi))16i620000 with m = 5 after a
5000 burn-in period for the dugongs dataset.

respectively, which are quite close to the previous ones. Hence, we conclude that it is acceptable

to use the standard techniques for independent samples. Note that the autocorrelations are well

defined since all parameters have finite posterior variances (for the proof see in the Appendix.)

In order to compare the precision of the above estimators with those obtained by the default

method of WinBUGS, we also ran in that package 50 independent chains of length 25000 starting

from the same values as before and took as burn-in period 5000 iterations as well. The estimated

standard errors of the posterior means’ estimates of α, β and γ across the 50 chains were

found to be 0.0026, 0.00163 and 0.00104 respectively, that is, from 20 to 50% larger than our

method’s. Hence, we can safely conclude that the proposed method provides better Monte Carlo

approximations to the posterior means of the above model’s parameters.

4.4 Logistic regression - Challenger dataset

In 1986, the space shuttle Challenger exploded during the take-off. The explosion was the result

of an O-ring failure. The accident was thought to be caused by the unusually cold weather at

the time of launch, as there is reason to believe that the O-ring failure probabilities increase

as temperature decreases (Dalal et al., 1989). This has been concluded by data from previous

space shuttle launches and O-ring failures. The dataset consist of n = 23 pairs (yi, xi) and is

shown in Table 3.

A reasonable model for these data is the logistic regression model

P(Y = 1|x) = p(x) =
exp(α + βx)

1 + exp(α + βx)
,

12



Temperature (xi) 53 57 58 63 66 67 67 67 68 69 70 70 70 70 72 73 75 75 76 76 78 79 81

Failure (yi) 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0

Table 3: The Challenger dataset: yi = 1 indicates failure of the ith O-ring.

that is, p(x) is the probability of an O–ring failure at temperature x. Here, we consider the

same prior as Robert and Casella (2004) for the parameters of the model. More specifically, α

and β are considered a priori independent; an exponential prior with mean b is assigned to eα

and a flat prior to β, that is,

πα(α)πβ(β) = eα−eα/b, α, β ∈ R.

Let α̂ be the maximum likelihood estimate of α. Following Robert and Casella (2004), we set

b = exp(α̂ + γ), where γ = 0.577216 is the Euler’s constant. Note that b is the value that makes

E(α) = α̂. Then, the posterior distribution of the parameters is

π(α, β|data) ∝ f(data|α, β)πα(α)πβ(β)

∝
n

∏

i=1

(

exp(α + βxi)

1 + exp(α + βxi)

)yi
(

1

1 + exp(α + βxi)

)1−yi

eα−eα/b.

For implementing the Gibbs sampler, the full conditional distributions of α and β are needed.

However, they do not have a standard form. Therefore we will use the proposed approach, i.e.,

the discretization of the state space followed by proper weighing of the output. Since the state

space of the parameters is unbounded, some transformations are needed. Setting

θ =
exp{(α − α̂)/λ1}

1 + exp{(α − α̂)/λ1}
and η =

exp{(β − β̂)/λ2}

1 + exp{(β − β̂)/λ2}
,

where λ1 and λ2 are some positive constants and β̂ is the maximum likelihood estimator of β

will serve our purpose because now the state space of both θ and η is the open interval (0, 1).

It is easy to see that the posterior distribution of (θ, η) is

π(θ, η|data) ∝
f(data|θ, η)πα

(

α̂ + λ1logit(θ)
)

πβ

(

β̂ + λ2logit(η)
)

θ(1 − θ)η(1 − η)
.

We now choose as target distribution

g(θ, η|data) ∝
f(data|θ[m1], η[m2])πα

(

α̂ + λ1logit(θ[m1])
)

πβ

(

β̂ + λ2logit(η[m2])
)

θ[m1](1 − θ[m1]) η[m2](1 − η[m2])
,

where θ[m1] = (2[m1θ] + 1)/2m1, η[m2] = (2[m2η] + 1)/2m2 and m1 and m2 the number of bins

of the interval (0, 1) corresponding to θ and η respectively.

The implementation of the Gibbs sampler with g as target distribution is an easy task.

Then, in each iteration, (θ, η) is weighted by w(θ, η) = π(θ, η|data)/g(θ, η|data). Figure 5
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Figure 5: Histograms, convergence of the weighted means α̂IS
n and β̂IS

n and autocorrela-
tions of the unweighted samples (αi)16i650000 and (βi)16i650000 and of the weighted samples
(αi, w(θi, ηi))16i650000 and (βi, w(θi, ηi))16i650000 with mα = 20, mβ = 20, λ1 = 0.5 and λ2 = 0.1
for the Challenger dataset.

shows the histogram, the autocorrelations and the convergence of the weighted means α̂IS
n =

∑n
i=1 w(θi, ηi)αi/

∑n
i=1 w(θi, ηi) and β̂IS

n =
∑n

i=1 w(θi, ηi)βi/
∑n

i=1 w(θi, ηi) to the posterior

means E{α|data} and E{β|data} respectively, computed from the output of 50000 updates

after a burn-in period of 5000 iterations, with mα = mβ = 20, λ1 = 0.5 and λ2 = 0.1. We

can immediately notice that the autocorrelations in the weighted samples almost vanish. (For

the finiteness of the posterior variances and thus the existence of the autocorrelations see in the

Appendix.) So, we can estimate the Monte Carlo standard errors using standard methods for

iid samples. In order to confirm that, we repeated the procedure 50 times in order to obtain 50

independent chains of total length 50000, after corresponding burn-in periods of 5000. For each

chain, we estimated the standard errors for α̂IS
n and β̂IS

n using the formula for the estimation of

standard error of the ratio estimator for independent samples. The averages of these estimates

were 0.06381 for α̂IS
n and 9.4 × 10−4 for β̂IS

n . Using now the random samples consisting of the

50 independent estimates of E{α|data} and E{β|data}, i.e., (α̂IS
n,i)(16i650) and (β̂IS

n,i)(16i650), we

estimated the standard errors by 0.06562 and 9.7 × 10−4. These values are quite close to the

previous estimates and this justifies the use of methods for iid samples for estimating standard

errors under our approach.

5 Summary

The aim of this paper is to present some applications of an easy-to-implement weighted scheme

which is based on the discretization of the state space X and the proper weighting of the

simulated output. As already mentioned, the method can significantly simplify MC and MCMC

algorithms. We think that the most substantial benefit of the proposed weighted scheme is that,

when employed in the context of MCMC algorithms, the autocorrelations almost vanish. Hence,
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the standard errors of posterior expectations’ estimates can be easily estimated using standard

techniques for independent samples, a feature which is very useful in practical applications.

Appendix

Here, we will show that in the examples on dugongs and Challenger datasets, the parameters have

finite posterior second moments. In fact, we will prove that this is the case for the corresponding

importance weights; the desired result follows quite easily among the same lines.

Dugongs dataset

In the dugongs dataset example we have

∫

θ
w2(θ)g(θ)d(θ) =

∫

θ
w(θ)π(θ)dθ

=

∫

α,β,γ,τ
exp

{

−
τ

2

[

n
∑

i

(yi − α + βγxi)2 −
n

∑

i

(yi − α + βγxi

[m])
2

]}

×

τn/2+k−1 exp

{

n
∑

i

(yi − α + βγxi)2 − τk −
ταα2

2
−

τββ2

2

}

dα dβ dγ dτ

=

∫

α,β,γ,τ
τn/2+k−1 exp

{

−τ

[

n
∑

i

(yi − α + βγxi)2 −
1

2

n
∑

i

(yi − α + βγxi

[m])
2 + k

]}

×

exp

(

−
ταα2

2
−

τββ2

2

)

dα dβ dγ dτ.

By choosing now as γ[m] the value that maximizes the full conditional distribution of γ within

each interval, we ensure that the quantity
∑

(yi−α+βγxi)2− 1
2

∑

(yi−α+βγxi

[m])
2 +k is strictly

positive. Thus, integrating with respect to τ we get

∫

θ
w2(θ)g(θ)dθ =

∫

α,β,γ

Γ(n/2 + k) exp
(

− ταα2

2 −
τββ2

2

)

{

∑n
i (yi − α + βγxi)2 − 1

2

∑n
i (yi − α + βγxi

[m])
2 + k

}n/2+k
dα dβ dγ

6 Γ(n/2 + k)k−n/2−k

∫

α,β
exp

(

−
ταα2

2
−

τββ2

2

)

dα dβ < ∞.

The finiteness of the parameters’ posterior second moments follows easily among the same lines.

Challenger dataset

Here we prove that the variance of the weights in the example presented in Subsection 4.4 is

finite independently of the choice of the points θ[m1] and η[m2].
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The second moment of the weights is
∫∫

w(θ, η)2g(θ, η)dθ dη =

∫∫

w(θ, η)π(θ, η)dθ dη

=

m1
∑

j=1

m2
∑

k=1

∫ j/m1

θ=(j−1)/m1

∫ k/m2

η=(k−1)/m2

w(θ, η)π(θ, η)dθ dη

=

m1
∑

j=1

m2
∑

k=1

Cjk

∫ j/m1

θ=(j−1)/m1

∫ k/m2

η=(k−1)/m2

exp {2α̂ + 2λ1logit(θ) − 2 exp [α̂ + λ1logit(θ)] /b}

θ2(1 − θ)2η2(1 − η)2
×

n
∏

i=1

exp
{

2yi

[

α̂ + λ1logit(θ) + β̂xi + λ2xilogit(η)
]}

{

1 + exp
[

α̂ + λ1logit(θ) + β̂xi + λ2xilogit(η)
]}2 dθ dη,

where C−1
jk equals the integrand evaluated at θ[m1], η[m2], i.e., the midpoints of the intervals

[(j − 1)/m1, j/m1], [(k − 1)/m2, k/m2], respectively. Setting now C∗ = maxCjk < ∞ we have

that the above expression is less than or equal to

C∗

∫ 1

θ=0

∫ 1

η=0

exp {2α̂ + 2λ1logit(θ) − 2 exp [α̂ + λ1logit(θ)] /b}

θ2(1 − θ)2η2(1 − η)2
×

n
∏

i=1

exp
{

2yi

[

α̂ + λ1logit(θ) + β̂xi + λ2xilogit(η)
]}

{

1 + exp
[

α̂ + λ1logit(θ) + β̂xi + λ2xilogit(η)
]}2 dθ dη =

C∗∗

∫ 1

θ=0

∫ 1

η=0

exp {2λ1logit(θ) − 2 exp [λ1logit(θ)] /b}

θ2(1 − θ)2η2(1 − η)2
×

exp
{

2λ1logit(θ)
∑

yi + 2λ2logit(η)
∑

xiyi

}

∏n
i=1

{

1 + C1 exp
[

λ1logit(θ) + β̂xi + λ2xilogit(η)
]}2

where C∗∗ = C∗ exp{2α̂(2
∑

yi + 1) + 2β̂
∑

xiyi − 2 exp(α̂)/b} and C1 = exp(α̂). Set sy =
∑

yi,

sx =
∑

xi, sxy =
∑

xiyi. Then, the above integral is less than or equal to

∫ 1

θ=0

∫ 1

η=0

(

θ
1−θ

)2λ1(sy+1)( η
1−η

)2λ2sxy exp
{

− 2b−1
(

θ
1−θ

)λ1
}

θ2(1 − θ)2η2(1 − η)2
∏n

i=1

{

1 + C1 exp(β̂xi)
(

θ
1−θ

)λ1
( η

1−η

)λ2xi
}2

dθ dη.

By making now the transformations v = θ
1−θ , u = η

1−η , the integral takes the form:

I =

∫ ∞

0

∫ ∞

0

v2λ1(sy+1)u2λ2sxy

∏n
i=1

{

1 + C1 exp(β̂xi)vλ1uλ2xi

}2

(

1 +
1

u

)2(

1 +
1

v

)2

e−2b−1vλ1
dudv. (4)

Consider first the integral with respect to u,

Iv ≡

∫ ∞

0

u2λ2sxy

∏n
i=1

{

1 + C1 exp(β̂xi)vλ1uλ2xi

}2

(

1 +
1

u

)2

du.

It holds
∏n

i=1

{

1 + C1 exp(β̂xi)v
λ1uλ2xi

}

> 1 + C1 exp(β̂sx)v
nλ1uλ2sx. Thus,

Iv 6

∫ ∞

0

u2λ2sxy

{1 + C2vnλ1uλ2sx}2

(

1 +
1

u

)2

du ≡ I∗v ,
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say, where C2 = C1 exp(β̂sx). By making the change of variable t = C2v
nλ1uλ2sx and setting

C3 = C
1/λ2sx

2 , C4 = λ2sxC3C
2sxy/sx

2 , we get

I∗v =
1

C4vλ1(2sxy+λ−1

2
)/x̄

∫ ∞

0

t(2sxy+λ−1

2
)/sx−1

(1 + t)2

(

1 +
C3v

λ1/λ2x̄

t1/λ2sx

)2

dt

=
1

C4vλ1(2sxy+λ−1

2
)/x̄

{
∫ ∞

0

t(2sxy+1/λ2)/sx−1

(1 + t)2
dt +

2C3v
λ1/λ2x̄

∫ ∞

0

t2sxy/sx−1

(1 + t)2
dt + C2

3v2λ1/λ2x̄

∫ ∞

0

t(2sxy−1/λ2)/sx−1

(1 + t)2
dt

}

.

For any λ2 such that (2sxy +1/λ2)/sx < 2, all of the above integrals are finite. More specifically

for λ2 = 0.1 (i.e., the value we used to run the example), it holds (2sxy +10)/sx = 902/1600 < 2,

so the above three integrals are equal to Γ
(

451
800

)

Γ
(

1149
800

)

, Γ
(

223
400

)

Γ
(

577
400

)

, Γ
(

441
800

)

Γ
(

1159
800

)

, respec-

tively. Now, I in (4) will be finite if

Ij ≡

∫ ∞

0
v2λ1(sy+1)−{2λ1sxy+(1−j)λ1/λ2}/x̄−2(1 + v)2e−2v/bdv < ∞, for j = 0, 1, 2.

This is true as long as 2λ1(sy + 1)− (2λ1sxy + λ1/λ2)/x̄− 1 > 0. In particular, for λ1 = 0.5 and

λ2 = 0.1 it holds 2sy − (2sxy + 10)/x̄ = 1654/1600 > 0.

The finiteness of the parameters’ posterior second moments can be easily proven among the

same lines.
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Malefaki, S. and Iliopoulos, G. (2008). On convergence of properly weighted samples to the

target distribution. Journal of Statistical Planning and Inference, 138, 1210–1225.

Neil, M., Tailor, M., and Marquez, D. (2007). Inference in hybrid Bayesian networks using

dynamic discretization. Statistics and Computing, 17, 219–233.

Ratkowsky, D. (1983). Nonlinear regression modeling. Marcel Dekker, New York.

Robert, C.P. and Casella, G. (2004). Monte Carlo statistical methods (2nd ed.), New York:

Springer–Verlag.

Sahu, S.K., and Zhigljavsky, A.A. (2003). Self–regenerative Markov Chain Monte Carlo with

adaptation. Bernoulli, 9, 395–422.

Sainudiin, R. and York, T. (2006). An auto-validating rejection sampler.

http://arxiv.org/abs/math/0611479.

18


