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e and asso
iation, 
anoni
al 
orrelation and lo-gisti
 regression. The most often used 
riterion is based on the homogeneity ofthe 
orresponding 
ategories whi
h was 
onne
ted to asso
iation and 
orrelationmodels by Goodman (1981a, b) and Gilula (1986) respe
tively. In this paper werelate homogeneity to a 
lass of generalized asso
iation models, based on the f{divergen
e. The main issue raised in this paper is that the homogeneity and thestru
tural 
riteria 
an not be 
ontradi
tory. It is proved that 
ollapsing amonghomogeneous 
ategories does not a�e
t the underlying stru
ture of the table.AMS 2000 subje
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e.1 Introdu
tionThe subje
t of grouping rows or/and 
olumns (usually su

essive) of a 
ontingen
ytable is as old as 
ontingen
y tables analysis itself and one 
an �nd related referen
eseven in the very early literature on 
ontingen
y tables (Yates, 1948). The issue of
ollapsibility remains a
tive and ea
h time is 
onne
ted with the new developmentson the analysis of 
ontingen
y tables. The main motivations for 
ollapsing 
lassi�-
ation 
ategories are to easily fa
e the problem of small 
ounts in a parti
ular rowor 
olumn (it is 
ollapsed to the most relevant), to dete
t possible overdispersionsof a 
lassi�
ation s
ale and to simplify the analysis of asso
iation between the two
lassi�
ation variables (usually a simpler model �ts well to the redu
ed table). Thebasi
 
riteria for 
ollapsing (or not) are those of homogeneity (Benz�e
ri, 1973; Hirotsu,1983; Gilula, 1986; Gilula and Krieger, 1989; Weller and Romney, 1990; Beh, 1997,1



1998; Wermuth and Cox, 1998) and stru
ture (Goodman, 1981b, 1985). Also, whena 
lassi�
ation variable is ordinal, the violation of the ordering of 
ertain estimateds
ores is a reason to 
ollapse the 
orresponding 
ategories to ensure the known order(Goodman, 1985, 1986; Agresti et al., 1987; Ritov and Gilula, 1991, 1993).Let � = (�ij) be the I�J probability table 
orresponding to the 
ross{
lassi�
a-tion of two 
ategori
al variables with I and J 
ategories respe
tively. Denoting theirmarginal distributions by �i� =PJj=1 �ij and ��j =PIi=1 �ij, two rows labeled s andt are said to be homogeneous, if�sj�s� = �tj�t� ; 8 j = 1; : : : ; J ; (1.1)that is, the 
orresponding 
onditional 
olumn probabilities are equal. Note that�sj=�s�, j = 1; : : : ; J , has been named by Benz�e
ri (1973) as the s-th row pro�le. Thushomogeneity is expressed as equality of the 
orresponding row pro�les. This de�nition
an obviously be extended to more than two rows while homogeneous 
olumns arede�ned similarly.Homogeneity was initially related to the basi
 model of independen
e, due to itsbasi
 property: \Independen
e holds for every subtable formed by homogeneous rowsor 
olumns." As a 
onsequen
e, if we denote by I and ~I the models of independen
efor the initial I�J and the 
ollapsed ~I� ~J tables respe
tively (~I 6 I, ~J 6 J), then thedi�eren
e of the likelihood ratio statisti
s for the �t of models I and ~I, G2(I)�G2(~I),should not be statisti
ally signi�
ant, provided the 
ollapsing has been done amonghomogeneous rows and 
olumns (see Williams, 1952 and Goodman, 1985). A similaridea has been also developped in 
orresponden
e analysis framework by Benz�e
ri(1973), who introdu
ed the prin
iple of distributional equivalen
e.Goodman (1981b) noted that when independen
e is reje
ted for the initial table,
ollapsing homogeneous 
ategories 
an a�e
t the underlying asso
iation stru
ture,although the �t of independen
e remains very bad. This led him to the introdu
tionof the stru
tural 
riterion, a

ording to whi
h, two (or more) homogeneous 
ategories
an be 
ollapsed only if the asso
iation stru
ture remains un
hanged.The main issue raised in this paper is that the predominant 
riteria of homo-geneity and stru
ture for whi
h so far was supported that they 
an sometimes be
ontradi
tory (Goodman, 1981b; Gilula, 1986), are in agreement. That is, 
ollapsingbetween homogeneous 
lassi�
ation 
ategories ensures the preservation of the under-lying stru
ture of the probability table�. As a 
onsequen
e, no simpler model shouldbe appropriate for the 
ollapsed table. Nevertheless, some simple asso
iation stru
-tures should naturally be ex
luded from this statement, sin
e they 
an not 
oexistwith 
ertain homogeneities (see Se
tion 5). In our 
ontext, the stru
ture is des
ribedin terms of a generalized asso
iation model based on an information theoreti
 setup,2



whi
h in
ludes the models used by Goodman and Gilula as spe
ial 
ases.Next we outline the layout of our paper. In Se
tion 2 we des
ribe the generalizedasso
iation models used throughout this paper. Se
tion 3 
ontains the theoreti
alresults that support our assertions about the homogeneity and stru
tural 
riteriaexplained above. An illustrative example is provided in Se
tion 4, while Se
tion 5
ontains 
omments and 
on
lusions.2 Generalized asso
iation modelsIn the 
ontext of 
ontingen
y tables analysis, the asso
iation and 
orrelation modelsare well{known (
f. Goodman, 1985, 1986). For an I�J 
ontingen
y table � = (�ij)and for 1 6 K 6 M = min(I; J) � 1, the asso
iation model of K-th order, denotedby RC(K), is de�ned by�ij = aibj exp KXk=1 �k�ik�jk! ; i = 1; : : : ; I ; j = 1; : : : ; J : (2.1)In parti
ular, for K = 1, the model is the multipli
ative row{
olumn asso
iationmodel, simply noted by RC, whereas when K = M , RC(M) is the saturated model.The parameters ai, i = 1; : : : ; I, and bj , j = 1; : : : ; J , are the row and 
olumn maine�e
ts respe
tively, while the ve
tors �k = (�1k; : : : ; �Ik)0 and �k = (�1k; : : : ; �Jk)0are the row and 
olumn s
ores 
orresponding to the k-th term of the intera
tion sum,k = 1; : : : ;K. In the related literature, the k-th term is referred as the k-th axis dueto the graphi
al displays of the row and 
olumn s
ores, often used for visualizationpurposes. The �k's are known as the intrinsi
 asso
iation parameters. On the rowand 
olumn s
ores are imposed the 
onstraintsIXi=1 w1i�ik = JXj=1w2j�jk = 0 ; k = 1; : : : ;K ; (2.2)and IXi=1 w1i�ik�i` = JXj=1w2j�jk�j` = Æk` ; k; ` = 1; : : : ;K ; (2.3)where Æk` is the Krone
ker's delta, while w1i (i = 1; : : : ; I) and w2j (j = 1; : : : ; J)are row and 
olumn positive weights respe
tively. In the literature, the 
ommon usedweights are the uniform (w1i = w2j = 1, for all i, j) and the marginal (w1i = �i�,w2j = ��j, i = 1; : : : ; I, j = 1; : : : ; J). For a detailed related justi�
ation see Goodman(1985) and Be
ker and Clogg (1989). 3



In an analogue manner, the 
orrelation model of K-th order is de�ned as�ij = �i���j  1 + KXk=1 �k�ik�jk! ; i = 1; : : : ; I ; j = 1; : : : ; J ; (2.4)and denoted by CA(K). The simplest model is obtained for K = 1 and is denoted byCA, while CA(M) is the saturated model. The row and 
olumn s
ores �k and �k ofCA(K) satisfy also the 
onstraints (2.2) and (2.3) but with the marginal weights.The main qualitative di�eren
e between these two 
lasses of models is that al-though both of them are models of dependen
e, the asso
iation models are (under
ertain 
onditions) the 
losest to independen
e in terms of the Kullba
k{Leibler dis-tan
e, while 
orrelation models in terms of the Pearsonian distan
e (Gilula et al.,1988). Rom and Sarkar (1992), Kateri and Papaioannou (1994) and Goodman (1996)introdu
ed general 
lasses of dependen
e models whi
h express the departure from in-dependen
e in terms of generalized measures and in
lude asso
iation and 
orrelationmodels as spe
ial 
ases.The generalized measure used by Kateri and Papaioannou (1994) was the f{divergen
e. If P = (pij) and Q = (qij) are two dis
rete �nite bivariate probabilitydistributions, then the f{divergen
e between P and Q (or Csiszar's measure of infor-mation in Q about P) is de�ned byIC(P;Q) =Xi;j qijf(pij=qij); (2.5)where f is a real{valued 
onvex fun
tion on [0;1) with f(1) = f 0(1) = 0, 0f(0=0) = 0,0f(y=0) = limx!1 f(x)=x.Let F (x) = f 0(x). Kateri and Papaioannou (1994) introdu
ed the generalizedasso
iation model of order K, whi
h in the sequel will be denoted by RC[f ℄(K),setting�ij = �i���jF�1 �i + �j + KXk=1�k�ik�jk! ; i = 1; : : : ; I; j = 1; : : : ; J ; (2.6)where F�1 denotes the inverse fun
tion of F and �k and �k satisfy (2.2) and (2.3).Model (2.6) is equivalent to the generalized linear modelF � �ij�i���j� = �+ �(1)i + �(2)j + �(12)ij ;= �+ �(1)i + �(2)j + KXk=1�k�ik�jk; i = 1; : : : ; I; j = 1; : : : ; J ; (2.7)4



where IXi=1 w1i�(1)i = JXj=1w2j�(2)j = IXi=1 w1i�(12)ij = JXj=1w2j�(12)ij = 0 ; (2.8)and the matrix of intera
tions � = (�(12)ij ) is of rank K. Via the Generalized Sin-gular Value De
omposition (GSVD), � is expressed as � = M�N0, where M =(�ik) (I � K) and N = (�jk) (J � K), the left and right singular ve
tors respe
-tively, are orthonormalized with respe
t to W1 = diag(w11; : : : ; w1I) and W2 =diag(w21; : : : ; w2J ), e.g. they satisfy M0W1M = N0W2N = IK , the K-th order iden-tity matrix, and � = diag(�1; : : : ; �K) with �1 > : : : > �K > 0. It is important tohighlight that the order K of the generalized asso
iation model 
oin
ides with therank of the generalized linear model intera
tion parameters matrix and is not a�e
tedby the 
hoi
e of the weights. In parti
ular, the following lemma holds.Lemma 2.1. If W�1 = diag(w�11; : : : ; w�1I) and W�2 = diag(w�21; : : : ; w�2J ) are matri
esof weights, then the 
orresponding intera
tion parameters matrix �� is expressed interms of � as�� = [II � 1IW�1=tra
e(W�1)℄� [IJ � 1JW�2=tra
e(W�2)℄0 ; (2.9)where 1I , 1J are the I� I, J �J matri
es of ones. Moreover, rank(��) = rank(�) =K. Noti
e that the equality of ranks stated in Lemma 2.1 is not immediate sin
e thematri
es multiplying � in (2.9) are idempotent with ranks I � 1 and J � 1 respe
-tively. The row and 
olumn s
ores of the 
orresponding generalized asso
iation modelRC[f ℄(K) are the generalized singular ve
tors of �� orthonomalized with respe
t toW�1 and W�2.Remark 2.1. The parameters �k, �k, �k, k = 1; : : : ;K, in (2.1), (2.4) and (2.6) arenot the same. We adopt uni�ed notation for these parameters of any model sin
e wemake use only of their qualitative identity and not their magnitude. Note also thatthe rank K of � in (2.6) in general varies for di�erent 
hoi
es of f .Examples. 1) Let f0(x) = x log x+ 1� x, F (x) = f 00(x) = log x. Then, model (2.7)is equivalent to the well{known log{linear modellog �ij = u+ u(1)i + u(2)j + u(12)ij ; i = 1; : : : ; I; j = 1; : : : ; J ; (2.10)
5



with u = �+ Piw1i log �i�Piw1i + Pj w2j log ��jPj w2j ;u(1)i = �(1)i + log �i� � Piw1i log �i�Piw1i ;u(2)j = �(2)j + log ��j � Pj w2j log ��jPj w2j ; andu(12)ij = �(12)ij :The parameters of model (2.10) satisfy also the 
onstraints (2.8). Considering uniformweights, (2.8) are redu
ed to the traditional 
onstraints used in the log{linear modelsframework. Sin
e rank(�) = K, model (2.10) is equivalent to the standard asso
iationmodel RC(K) in (2.1).2) Consider the power divergen
e loss fun
tion fr(x) = [xr+1�x+r(1�x)℄=[r(r+1)℄,r 6= �1; 0 (see Read and Cressie, 1988, p.128), for whi
h F (x) = f 0r(x) = (xr � 1)=r,i.e. the Box and Cox (1964) power transformation. Then, model (2.7) be
omes�ij = �i���j "1 + r �i + �j + KXk=1�k�ik�jk!#1=r ; (2.11)whi
h is essentially equivalent to the power model of Ba

ini et al. (1993). For K = 1the model is �rst introdu
ed by Rom and Sarkar (1992). Noti
e also that in thespe
ial 
ase r = 1 and for marginal weights, model (2.11) redu
es to the 
anoni
al
orrelation model CA(K) in (2.4), while for r ! 0 it 
oin
ides with the asso
iationmodel RC(K), sin
e limr!0 fr(x) = f0(x).3 Main resultsAs already mentioned in the Introdu
tion, the predominant 
riterion for 
ollapsibilityis that of homogeneity. Goodman (1981b, 1986) 
onne
ted homogeneity to asso
iationmodels by stating that the equality of the s
ores in the saturated asso
iation model,RC(M), implies homogeneity of the 
orresponding 
ategories. Later, Gilula (1986)proved the equivalen
e of these two issues for the saturated 
anoni
al 
orrelationmodel CA(M). In Theorem 3.2 below, we extend this result for the generalizedasso
iation model RC[f ℄(K), for any 
hoi
e of the divergen
e measure f and for anyK 6M .The following lemma provides two useful equalities 
onne
ting the intera
tionparameters of the generalized linear model (2.7) with 
orresponding row or 
olumns
ores. They are originally derived by Goodman (1996, p.421).6



Lemma 3.1. Let � = (�ij) be an I � J 
ontingen
y table with stru
ture RC[f ℄(K)given by (2.6), K 6 min(I; J)� 1. Then, for 1 6 s; t 6 I, 1 6 p; q 6 J , the followingequalities hold. JXj=1w2j(�(12)sj � �(12)tj )2 = KXk=1�2k(�sk � �tk)2 ; (3.1)IXi=1 w1i(�(12)ip � �(12)iq )2 = KXk=1�2k(�pk � �qk)2 : (3.2)Sin
e w2j, �2k are stri
tly positive for all j, k, equality (3.1) implies that �sk = �tk,k = 1; : : : ;K, if and only if �(12)sj = �(12)tj , j = 1; : : : ; J , that is, � has its s-th andt-th rows identi
al. The analogous 
on
lusion follows from (3.2) for the p-th and q-th
olumns of �.Theorem 3.2. Let � = (�ij) be an I� J 
ontingen
y table with stru
ture RC[f ℄(K)given by (2.6), K 6 min(I � 2; J � 1). A ne
essary and suÆ
ient 
ondition for twodistin
t rows s and t of � to be homogeneous is that �sk = �tk, k = 1; : : : ;K, where�sk and �tk are the s-th and t-th row s
ores of the underlying generalized asso
iationmodel RC[f ℄(K).Proof. Set Fij = F (�ij=�i���j). Then, by (1.1), homogeneity of the rows s and t isequivalent to Fsj = Ftj ; j = 1; : : : ; J ; (3.3)sin
e F is a stri
tly monotone fun
tion. Furthermore,Fsj � Ftj = (�(1)s � �(1)t ) + (�(12)sj � �(12)tj ) ; j = 1; : : : ; J : (3.4)SuÆ
ien
y. Let �sk = �tk, k = 1; : : : ;K, or equivalently, �(12)sj = �(12)tj , j =1; : : : ; J . Then, (3.4) be
omes Fsj � Ftj = �(1)s � �(1)t , j = 1; : : : ; J . Assume that�(1)s ��(1)t is positive (resp., negative). Sin
e F is a stri
tly in
reasing fun
tion, it holds�sj=�s� > (resp., <) �tj=�t�, j = 1; : : : ; J . The last equality leads to a 
ontradi
tionsin
e both sides add up to 1. Hen
e, �(1)s � �(1)t = 0 and Fsj = Ftj for all j, i.e. rowss and t are homogeneous.Ne
essity. Multiplying both sides of (3.4) by w2j and adding over j yields�(1)s � �(1)t = PJj=1w2j(Fsj � Ftj)PJj=1w2j : (3.5)Using (3.3), (3.4) and (3.5) it follows that �(12)sj = �(12)tj for all j and thus �sk = �tk,k = 1; : : : ;K. 7



Remark 3.1. Noti
e that in Theorem 3.2, the order K of the generalized asso
iationmodel is taken at most min(I � 2; J � 1) rather than min(I � 1; J � 1) whi
h is itsusual upper bound. This will be 
lari�ed after the presentation of Theorem 3.3 below.Remark 3.2. From the proof of Theorem 3.2 arises that homogeneity of two rows isequivalent to equality of the 
orresponding intera
tion and main e�e
t parameters inthe generalized linear model (2.7). Moreover, the weighted eu
lidean distan
erst = JXj=1 w2j(Fsj � Ftj)2 (3.6)
an measure the inhomogeneity of rows s and t, with a value of zero indi
ating ho-mogeneity. For the spe
ial 
ase of 
anoni
al 
orrelation model, rst be
omes the 
hi{squared distan
e between s-th and t-th row pro�les (Benz�e
ri, 1973).The formulation of Theorem 3.2 for two homogeneous 
olumns is obvious as wellas its extension to the general 
ase of multiple 
ollapses of sets of homogeneous rowsor/and 
olumns. An interesting issue is that when performing 
ollapses over ho-mogeneous 
ategories, the stru
ture of the asso
iation of the redu
ed table remainsun
hanged, as the following theorem states. For simpli
ity, this theorem is also ex-pressed for the 
ase of 
ollapsing two homogeneous rows while the more general resultis provided by Corollary 3.4 below.Theorem 3.3. Let � = (�ij) be an I�J 
ontingen
y table with stru
ture RC[f ℄(K),K 6 min(I � 2; J � 1), having homogeneous rows s and t. Let also ~� = (~�ij) be the(I � 1)� J table obtained by 
ollapsing these homogeneous rows. Then, the stru
tureof ~� is the same as that of �, i.e. RC[f ℄(K).Proof. Without loss of generality 
onsider s < t and pla
e the sum of the homogeneousrows s and t at row s. Then,~�ij = 8><>: �ij ; i < s; s < i < t ;�sj + �tj ; i = s ;�i+1;j ; i > t ; (3.7)and sin
e ~�sj=~�s� = �sj=�s�, ~��j = ��j, one has~Fij = F (~�sj=~�s�~��j) = ( Fij ; i < t ;Fi+1;j ; i > t : (3.8)Let the generalized linear model expression for ~F = ( ~Fij) be~Fij = ~�+ ~�(1)i + ~�(2)j + ~�(12)ij ; i = 1; : : : ; I � 1; j = 1; : : : ; J ; (3.9)8



with PI�1i=1 ~w1i~�(1)i = PJj=1 ~w2j~�(2)j = PI�1i=1 ~w1i~�(12)ij = PJj=1 ~w2j~�(12)ij = 0, where~w1i's are related to w1i's of the initial model (2.7) by the analog of (3.7), while ~w2j =w2j , j = 1; : : : ; J . Sin
e RC[f ℄(K) is the underlying model for �, then rank(�) = K,where � = (�(12)ij ) is the 
orresponding intera
tion parameters matrix in (2.7). Dueto the homogeneity of rows s and t, it holds by Theorem 3.2 that � has its s-th andt-th rows equal. It 
an be seen that the matrix ~� = (~�(12)ij ) arises from � by deletingits t-th row. Obviously, rank(~�) = rank(�) = K and thus the underlying model for~� is also RC[f ℄(K). By Lemma 2.1 the 
hoi
e of weights does not a�e
t the order ofthe model.Remark 3.3. It is 
lear now the demand of K 6 min(I � 2; J � 1) in Theorems 3.2and 3.3. Sin
e the order of the generalized asso
iation model remains the same forthe 
ollapsed table ~�, K has to be 
onsistent also with its size. As a 
onsequen
e,if the initial's table stru
ture is RC[f ℄(M), i.e. saturated, then it is not possible toexist any homogeneities in the smallest dimension. In the spe
ial 
ase of a square
ontingen
y table with saturated stru
ture, there are not any homogeneities at all.Remark 3.4. De�ning weighted eu
lidean 
olumn distan
es in analogy to rst in (3.6),it 
an be seen that when 
ollapsing homogeneous rows these 
olumn distan
es do not
hange. This generalizes the prin
iple of distributional equivalen
e of Benz�e
ri (1973).Corollary 3.4. Let ~� = (~�ij) be the ~I� ~J table obtained by 
ollapsing all homogeneousrows and 
olumns of � (~I 6 I, ~J 6 J). Then, the 
ollapsed table ~� will have thesame stru
ture, RC[f ℄(K), K 6 min(~I; ~J)� 1, as the initial table �.The parameters of the RC[f ℄(K) model for the 
ollapsed table ~� are 
onne
tedto the parameters of the 
orresponding model for the initial table � as stated below.Corollary 3.5. Let A1; : : : ; A~I (resp., B1; : : : ; B ~J) be the partition of A = f1; : : : ; Ig(resp., B = f1; : : : ; Jg) formed by homogeneous rows (resp., 
olumns) of � withstru
ture RC[f ℄(K), K 6 min(~I; ~J)�1. Then, the 
ell probabilities of ~� are given by~�qr = ~�q�~��rF�1 �+ ~�(1)q + ~�(2)r + KXk=1 �k~�qk~�rk! ; q = 1; : : : ; ~I ; r = 1; : : : ; ~J ;(3.10)with ~�(1)q = �(1)i ; i 2 Aq ; q = 1; : : : ; ~I ; (3.11)~�(2)r = �(2)j ; j 2 Br ; r = 1; : : : ; ~J ; (3.12)~�qk = �ik ; i 2 Aq ; q = 1; : : : ; ~I ; k = 1; : : : ;K ; (3.13)~�rk = �jk ; j 2 Br ; r = 1; : : : ; ~J ; k = 1; : : : ;K ; (3.14)9



provided that the weights for the 
ollapsed table are~w1q = Xi2Aq w1i ; q = 1; : : : ; ~I ; ~w2r = Xj2Br w2j ; r = 1; : : : ; ~J : (3.15)Proof. Let F = (Fij), ~F = ( ~Fij), where Fij = F (�ij=�i���j), ~Fij = F (~�ij=~�i�~��j).Under (3.15), the intera
tion parameters matrix ~� for ~F arises from the 
orrespondingmatrix � for F by deleting appropriate rows and 
olumns (see also the proof ofTheorem 3.3). Let ~M = (~�qk) and ~N = (~�rk), where ~�qk and ~�rk are as in (3.13)and (3.14). It 
an be seen that ~� = ~M�~N0 and, due to (3.15), ~M0 ~W1 ~M = ~N0 ~W2 ~N= IK , where ~W1 = diag( ~w11; : : : ; ~w1~I) and ~W2 = diag( ~w21; : : : ; ~w2 ~J ). Thus, ~M and~N are the matri
es 
ontaining the left and right singular ve
tors of ~� orthonormalizedwith respe
t to ~W1 and ~W2. The uniqueness of the GSVD ensures that the ~�qk'sand ~�rk's are the row and 
olumn s
ores of the RC[f ℄(K) model for ~�. Moreover,relations (3.11) and (3.12) are justi�ed by Remark 3.2.Condition (3.15) is satis�ed by the marginal weights. Hen
e, if marginal weightsare used, the RC[f ℄(K) model's parameters for table ~� are immediate provided fromthe 
orresponding parameters for � by (3.11) { (3.14). On the other hand, (3.15) isnot satis�ed by the uniform weights. Thus, marginal weights are preferable over theuniform ones sin
e they preserve the invarian
e of the parameters under 
ollapsing.4 An illustrative exampleAlthough, as mentioned in the Introdu
tion, the dete
tion of homogeneous 
ategoriesmay be done by testing independen
e in 
orresponding subtables, Theorem 3.2 allowsfor an alternative approa
h. Sin
e homogeneity of, say, rows s and t is equivalent tothe equality of the 
orresponding row s
ores, one may 
onsider the hypothesisHs;t0 : �sk = �tk ; k = 1; : : : ;K ;a signi�
an
e test of whi
h 
an be based on any asymptoti
ally normally distributedestimators of �'s. In the literature, there are algorithms 
al
ulating maximum likeli-hood estimators for the parameters of 
orrelation and asso
iation models as well astheir 
ovarian
e matrix (see Gilula and Haberman, 1986 and Haberman, 1995) as wellas results about generalized least squared estimation in power models (see Ba

ini etal., 2000). Having obtained the estimators one 
an 
ompute appropriate Mahalanobisdistan
es and 
he
king their signi�
an
e by 
omparing with an upper quantile of the
hi{square distribution with K � 1 degrees of freedom. A non{signi�
ant distan
eindi
ates homogeneity of the 
orresponding 
ategories. Note that so far in the related10



literature 
ollapsing of 
ategories based on the equality of the 
orresponding row or
olumn s
ores was illustrated only for the 
ase K = 1 and equality was de
ided uponsimple observation of 
loseness without performing any test of signi�
an
e.We materialized the above des
ribed pro
edure for the 
lassi
al asso
iation modelRC(K), whi
h is the most well{known member of the 
lass of generalized asso
iationmodels, using Haberman's (1995) algorithm. A drawba
k of this algorithm is thatthere is no option of sele
ting weights being restri
ted to the 
ase of uniform ones.We modi�ed it appropriately, in order to 
ontrol the use of weights.The pro
edure is applied on the data provided in Table 1 whi
h origins fromWermuth and Cox (1998) and 
lassi�es adults in Germany a

ording to age and typeof their edu
ation. Model RC(2) is appropriate for the table (see Table 2) and applyingthe modi�ed Haberman's algorithm we 
on�rm that only the last two 
olumns (4 and5) are homogeneous and we 
ollapse them. As expe
ted (by Theorem 3.3), the RC(2)model is the most parsimonious des
ribing the data also for the 
ollapsed table (seeTable 2). For the RC(2) model the s
ores' estimates for the initial table as well asits 
ollapsed version are provided in Table 3 for the 
ases of uniform and marginalweights.Wermuth and Cox (1998) suggested the grouping of 
olumns 4 and 5 as well, butthey redu
ed further the table by 
ollapsing rows 1 and 2. This is a de
ision based onthe a

eptable �t (p{value = 0.078) of the independen
e model of the 2� 4 subtableformed by the �rst two rows and after 
ollapsing the last two 
olumns. It is also
onsistent with the natural motivation to group the �rst row, whi
h has relativelysmall frequen
ies. However, the 
orresponding Mahalanobis distan
es using eitheruniform or marginal weights are both signi�
ant indi
ating that these rows are nothomogeneous. This 
an be observed 
learer in Figure 1, based on the RC(2) model,where the row s
ores of the �rst two rows are 
lose for the �rst axis but apart for these
ond. Noti
e also in Table 3, that when using marginal weights, the s
ores' 
hangefor the �rst redu
ed table is negligible with respe
t to the initial table, whereas the
orresponding 
hange for the se
ond one is more substantial, espe
ially for the se
ondaxis. This is in agreement with Corollary 3.5.5 Dis
ussionSummarizing, our major point to make is that there exist no 
ontradi
tion betweenhomogeneity and stru
tural 
riteria. Whenever we 
ollapse homogeneous 
ategories,the underlying asso
iation stru
ture is not a�e
ted. Nevertheless, if in pra
ti
e hap-pens after 
ollapsing 
ategories for whi
h we have the indi
ation that they are ho-mogeneous, a simpler model to be appropriate for the redu
ed table, we have to be11




autious. The assumption of either the homogeneity or the asso
iation stru
ture's or-der for one of the two tables is false. It 
an not be the 
ase that all these assumptionsare 
orre
t but not in agreement.In the asso
iation models framework, there are spe
ial asso
iation stru
tures,whi
h assume the row or/and 
olumn s
ores in (2.1) as known. In parti
ular, forK = 1, if the 
olumn (resp., row) s
ores are pre{spe
i�ed (equidistant) we are led tothe Row (resp., Column) e�e
t model, denoted by R (resp., C). If further all s
ores are
onsidered as known, the Uniform (U) asso
iation model is a
hieved. Extensions ofthis type of models for K > 1 have been 
onsidered by Goodman (1981a) and Kateriet al. (1998). We would like to emphasize that Theorem 3.3 refers only to RC{typemodels and 
an not be applied to the spe
ial asso
iation models, mentioned above.For example, the U model, by its de�nition, 
an never express the stru
ture of aninitial table in presen
e of homogeneities, i.e. some of the row or/and 
olumn s
oresbeing equal. However it 
an be the 
ase the underlying asso
iation stru
ture to be ofthe U{type, the U model to be 
onsistent with the 
ollapsed table but not with theinitial one due to the homogeneity noise. Analogous observations 
an also be donefor other models of this type. So far this has been fa
ed as a stru
tural 
ontradi
tionand 
ollapsings have been reje
ted (Goodman, 1981b).It is important to highlight that the existen
e of homogeneities among 
lassi�
a-tion 
ategories is transferred to equalities of the 
orresponding s
ores and vi
e versa,for any 
hoi
e of the link fun
tion F of the RC[f ℄(K) model, with K not ne
essarilyremaining 
onstant for di�erent 
hoi
es of f . However, in 
ase of independen
e thenK = 0 for all possible 
hoi
es of f .From a di�erent point of view, it is sometimes preferable not to 
ombine in-distinguishable 
ategories but only appre
iate their similarity (Anderson, 1984 andGoodman 1985, 1986). For example, in the asso
iation models framework, when thes
ores' ordering of an ordinal 
lassi�
ation variable is violated or two s
ores are 
lose,Goodman equates them but does not 
ollapse the 
orresponding 
ategories (see alsoGilula and Haberman 1986, 1988). Hen
e, 
ollapsibility is a matter of poli
y. Whenequating the s
ores of the homogeneous 
ategories without 
ollapsing them, we areled to a model of better performan
e, sin
e the �t remains approximately the samewhile the degrees of freedom are augmented (less parameters due to s
ores' equality).On the other hand when we 
ollapse the 
ategories, the performan
e of the modelseems worse sin
e the �t remains the same while the degrees of freedom be
ome lessdue to the redu
tion of the table.In the 
ase of 
ommensurable 
lassi�
ation variables (usually o

urring in theframework of panel data) the grouping of 
ategories has to be applied simultaneouslyto rows and 
olumns (Goodman, 1981b). It is straightforward to adapt Theorems12



3.2 and 3.3 for this spe
ial 
ase. In this framework, it is sometimes meaningful toimpose the additional 
onstraint �ik = �ik, i = 1; : : : ; I, k = 1; : : : ;K 6 M , i.e.assume symmetri
 intera
tion. When K =M , it will be equivalent to the generalizedmodel of Quasi Symmetry (QS[f℄), based on f{divergen
e, introdu
ed by Kateri andPapaioannou (1997). For K <M , it will be a spe
ial 
ase of the QS[f℄ model. In thepanel data framework it is often the 
ase that large frequen
ies o

ur on the mainand se
ondary diagonals and the table is sparse at the 
orners. Also in some 
ases,from the nature of the data, there exists no diagonal (athleti
 data: games results,for example). These tables need spe
ial 
are and resear
h 
ould be developed towardsthese dire
tions. A
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Age GroupType of S
hooling 18-29 30-44 45-59 60-74 >74basi
, in
omplete 12 13 12 20 7basi
, 
omplete 215 507 493 460 137medium 277 300 192 126 38upper medium 52 91 47 15 6intensive 233 225 102 74 19Table 1: Classi�
ation of adults a

ording to age and type of their edu
ation.
Model G2 d.f. p{value Change of G2(I) from the initialtable (p-val. for the 
hange)I 357.146 16 .000 Initial TableRC 24.275 9 .039RC(2) 2.599 4 .627I 356.310 12 .000RC 23.487 6 .001 Collapsed 
olumns: 4, 5RC(2) 1.809 2 .405 .835 (.934)I 349.487 9 .000RC 16.677 4 .002 Collapsed rows: 1, 2RC(2) 1.800 1 .178 6.823 (.078)Table 2: Models' �t for Table 1, the table with 
ollapsed 
olumns 4 and 5 and thetable with additionally 
ollapsed rows 1 and 2.
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Uniform weights Marginal weightsInitial Table Initial Table�1 = 1:783 �2 = :690 �1 = :315 �2 = :082�i1-s
ores �j1-s
ores �i2-s
ores �j2-s
ores �i1-s
ores �j1-s
ores �i2-s
ores �j2-s
ores-.575 .529 -.431 -.684 -.701 1.522 3.952 1.025-.484 .428 .605 .400 -.972 .365 -.158 -.941.168 .073 -.209 .573 .761 -.573 .434 -.898.517 -.520 .467 -.181 1.192 -1.243 -3.295 1.165.374 -.511 -.432 -.107 1.293 -1.286 .496 1.014Collapsed Table (
olumns 4, 5) Collapsed Table (
olumns 4, 5)�1 = 1:462 �2 = 0:680 �1 = :315 �2 = :082�i1-s
ores �j1-s
ores �i2-s
ores �j2-s
ores �i1-s
ores �j1-s
ores �i2-s
ores �j2-s
ores-.549 .506 -.468 -.666 -.698 1.522 3.987 1.027-.518 .356 .579 .421 -.972 .365 -.159 -.943.180 -.081 -.197 .541 .761 -.573 .436 -.896.489 -.781 .492 -.296 1.191 -1.253 -3.284 1.130.399 -.406 1.293 .489Collapsed Table (
olumns 4, 5 and rows 1, 2) Collapsed Table (
olumns 4, 5 and rows 1, 2)�1 = 1:189 �2 = :492 �1 = :314 �2 = :069�i1-s
ores �j1-s
ores �i2-s
ores �j2-s
ores �i1-s
ores �j1-s
ores �i2-s
ores �j2-s
ores-.843 .662 .072 -.509 -.963 1.515 -.044 1.032-.096 .234 -.374 .495 .760 .371 .532 -.933.361 -.219 .787 .505 1.198 -.569 -3.868 -.910.387 -.677 -.485 -.491 1.293 -1.259 .617 1.126Table 3: Intrinsi
 asso
iation parameters and s
ores estimates for the RC(2) model�tted on Table 1 and on the redu
ed tables using uniform and marginal weights.
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Uniform weights Marginal weights

u

u

u

u

u

ut

ut

ut

ut

ut

�0:8 0:0 0:8�0:8
0:0
0:8

1
2

3
4

5 1

23
4 5

u

u

u

u
u

ut

utut

ut
ut

�2:0 0:0 2:0�5:0
0:0
5:0 1

2 3
4
5 12345

I Row S
ores O Column S
oresFigure 1: Estimated s
ores for the RC(2) model �tted on Table 1 using uniform andmarginal weights.
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