On collapsing categories
in two—way contingency tables

Maria Kateri! and George Iliopoulos?

!Department of Philosophy - Education - Psychology, University of Ioannina, 45110
Ioannina, Greece, e-mail: me00126Qcc.uoi.gr

?Department of Mathematics, University of the Aegean, 83200 Karlovasi, Samos,
Greece, e-mail: geh@aegean.gr

Abstract

The issue of collapsing categories of a contingency table’s classification vari-
ables is well-known and has been dealt in the framework of classical models
such as models of independence and association, canonical correlation and lo-
gistic regression. The most often used criterion is based on the homogeneity of
the corresponding categories which was connected to association and correlation
models by Goodman (1981a, b) and Gilula (1986) respectively. In this paper we
relate homogeneity to a class of generalized association models, based on the f—
divergence. The main issue raised in this paper is that the homogeneity and the
structural criteria can not be contradictory. It is proved that collapsing among
homogeneous categories does not affect the underlying structure of the table.
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1 Introduction

The subject of grouping rows or/and columns (usually successive) of a contingency
table is as old as contingency tables analysis itself and one can find related references
even in the very early literature on contingency tables (Yates, 1948). The issue of
collapsibility remains active and each time is connected with the new developments
on the analysis of contingency tables. The main motivations for collapsing classifi-
cation categories are to easily face the problem of small counts in a particular row
or column (it is collapsed to the most relevant), to detect possible overdispersions
of a classification scale and to simplify the analysis of association between the two
classification variables (usually a simpler model fits well to the reduced table). The
basic criteria for collapsing (or not) are those of homogeneity (Benzécri, 1973; Hirotsu,
1983; Gilula, 1986; Gilula and Krieger, 1989; Weller and Romney, 1990; Beh, 1997,



1998; Wermuth and Cox, 1998) and structure (Goodman, 1981b, 1985). Also, when
a classification variable is ordinal, the violation of the ordering of certain estimated
scores is a reason to collapse the corresponding categories to ensure the known order
(Goodman, 1985, 1986; Agresti et al., 1987; Ritov and Gilula, 1991, 1993).

Let IT = (7;;) be the I x J probability table corresponding to the cross—classifica-
tion of two categorical variables with I and J categories respectively. Denoting their

marginal distributions by ;. = ZJ m;; and m; = Zle Ti;, two rows labeled s and

=1
t are said to be homogeneous, if

ﬂ-sj 7th
— = \vi
Ts. T¢.

j=1....J, (1.1)
that is, the corresponding conditional column probabilities are equal. Note that
Tsj/Ts., j =1,...,J, has been named by Benzécri (1973) as the s-th row profile. Thus
homogeneity is expressed as equality of the corresponding row profiles. This definition
can obviously be extended to more than two rows while homogeneous columns are

defined similarly.

Homogeneity was initially related to the basic model of independence, due to its
basic property: “Independence holds for every subtable formed by homogeneous rows
or columns.” As a consequence, if we denote by I and I the models of independence
for the initial I x J and the collapsed I x J tables respectively (I < I, J < J), then the
difference of the likelihood ratio statistics for the fit of models I and I, G*(I) — G*(I),
should not be statistically significant, provided the collapsing has been done among
homogeneous rows and columns (see Williams, 1952 and Goodman, 1985). A similar
idea has been also developped in correspondence analysis framework by Benzécri
(1973), who introduced the principle of distributional equivalence.

Goodman (1981b) noted that when independence is rejected for the initial table,
collapsing homogeneous categories can affect the underlying association structure,
although the fit of independence remains very bad. This led him to the introduction
of the structural criterion, according to which, two (or more) homogeneous categories
can be collapsed only if the association structure remains unchanged.

The main issue raised in this paper is that the predominant criteria of homo-
geneity and structure for which so far was supported that they can sometimes be
contradictory (Goodman, 1981b; Gilula, 1986), are in agreement. That is, collapsing
between homogeneous classification categories ensures the preservation of the under-
lying structure of the probability table II. As a consequence, no simpler model should
be appropriate for the collapsed table. Nevertheless, some simple association struc-
tures should naturally be excluded from this statement, since they can not coexist
with certain homogeneities (see Section 5). In our context, the structure is described
in terms of a generalized association model based on an information theoretic setup,



which includes the models used by Goodman and Gilula as special cases.

Next we outline the layout of our paper. In Section 2 we describe the generalized
association models used throughout this paper. Section 3 contains the theoretical
results that support our assertions about the homogeneity and structural criteria
explained above. An illustrative example is provided in Section 4, while Section 5

contains comments and conclusions.

2 Generalized association models

In the context of contingency tables analysis, the association and correlation models
are well-known (cf. Goodman, 1985, 1986). For an I x J contingency table IT = (7;;)
and for 1 < K < M = min(Z,J) — 1, the association model of K-th order, denoted
by RC(K), is defined by

K
Tij = aibj exp (Zmumyﬂg) ci=1,...,0,5=1,...,J. (2.1)
k=1
In particular, for K = 1, the model is the multiplicative row—column association
model, simply noted by RC, whereas when K = M, RC(M) is the saturated model.
The parameters a;, ¢ = 1,...,I, and b;, j = 1,...,J, are the row and column main
effects respectively, while the vectors pr = (p1g,. .., prx) and vy = (vig, ..., v5)
are the row and column scores corresponding to the k-th term of the interaction sum,
k=1,...,K. In the related literature, the k-th term is referred as the k-th axis due
to the graphical displays of the row and column scores, often used for visualization
purposes. The ¢;’s are known as the intrinsic association parameters. On the row

and column scores are imposed the constraints

I 7
> wiipie =Y wyvp =0, k=1,...,K, (2.2)
i=1 j=1

and

s 7
meikmz = Zw2j7/jk7/jé =0k, kt=1,...,K, (2.3)
=1 =1

where 0y is the Kronecker’s delta, while wy; (¢ = 1,...,1) and wy; (j = 1,...,J)
are row and column positive weights respectively. In the literature, the common used
weights are the uniform (wi; = wo; = 1, for all 4, j) and the marginal (wy; = .,
woj =7 ,4=1,...,1,7=1,...,J). For a detailed related justification see Goodman
(1985) and Becker and Clogg (1989).



In an analogue manner, the correlation model of K-th order is defined as

K

T = 3.5 <1+Z¢kﬂikyjk> N 1= 1,...,[ 5 j = 1,...,J 5 (2.4)
k=1

and denoted by CA(K). The simplest model is obtained for K = 1 and is denoted by

CA, while CA(M) is the saturated model. The row and column scores pj and vy of

CA(K) satisfy also the constraints (2.2) and (2.3) but with the marginal weights.

The main qualitative difference between these two classes of models is that al-
though both of them are models of dependence, the association models are (under
certain conditions) the closest to independence in terms of the Kullback—Leibler dis-
tance, while correlation models in terms of the Pearsonian distance (Gilula et al.,
1988). Rom and Sarkar (1992), Kateri and Papaioannou (1994) and Goodman (1996)
introduced general classes of dependence models which express the departure from in-
dependence in terms of generalized measures and include association and correlation
models as special cases.

The generalized measure used by Kateri and Papaioannou (1994) was the f-
divergence. If P = (p;;) and Q = (g;;) are two discrete finite bivariate probability
distributions, then the f—divergence between P and Q (or Csiszar’s measure of infor-
mation in Q about P) is defined by

1P, Q) =Y aiif (pig/ai)s (2.5)
Y]
where f is a real-valued convex function on [0, c0) with f(1) = f'(1) =0, 0£(0/0) = 0,
0f(y/0) = lim f(z)/z.
Let F(z) = f'(z). Kateri and Papaioannou (1994) introduced the generalized
association model of order K, which in the sequel will be denoted by RC[f](K),
setting

K
7Tij:7Ti.7T.jF_1 (ai+ﬁj+z¢kﬂik7/jk> yi=1,..., 1, 5=1,...,J, (2.6)
k=1

where F~! denotes the inverse function of F' and py and vy satisfy (2.2) and (2.3).
Model (2.6) is equivalent to the generalized linear model

F (—7”7 ) = 2+ Al 02

3T J o
K
= A2 2P LS g, i =1, 0, =10, (27)
k=1



where

I J I J
1=1 j=1 1=1 j=1
(12)

and the matrix of interactions A = ()\ij ) is of rank K. Via the Generalized Sin-
gular Value Decomposition (GSVD), A is expressed as A = M®N' where M =
(i) (I x K) and N = (vj) (J x K), the left and right singular vectors respec-
tively, are orthonormalized with respect to Wy = diag(wny,...,wis) and Wg =
diag(woy, ..., way), e.g. they satisfy MW M = N'W;,N = I, the K-th order iden-
tity matrix, and ® = diag(¢1,...,¢x) with ¢1 > ... > ¢x > 0. It is important to
highlight that the order K of the generalized association model coincides with the
rank of the generalized linear model interaction parameters matrix and is not affected
by the choice of the weights. In particular, the following lemma holds.

Lemma 2.1. If W7 = diag(w],,...,w];) and W5 = diag(ws,, ..., w5 ;) are matrices
of weights, then the corresponding interaction parameters matrix A* is expressed in

terms of A as
A* = [I; — 1, W7 /trace(W?)] A [I; — 1, W3 /trace(W3)]', (2.9)

where 11, 15 are the I x I, J x J matrices of ones. Moreover, rank(A*) = rank(A) =
K.

Notice that the equality of ranks stated in Lemma 2.1 is not immediate since the
matrices multiplying A in (2.9) are idempotent with ranks I — 1 and J — 1 respec-
tively. The row and column scores of the corresponding generalized association model
RC[f](K) are the generalized singular vectors of A* orthonomalized with respect to
W7 and W3.

Remark 2.1. The parameters ¢x, pg, Vi, k=1,..., K, in (2.1), (2.4) and (2.6) are
not the same. We adopt unified notation for these parameters of any model since we
make use only of their qualitative identity and not their magnitude. Note also that
the rank K of A in (2.6) in general varies for different choices of f.

Examples. 1) Let fo(z) = zlogz + 1 — =z, F(z) = fj(z) = logz. Then, model (2.7)
is equivalent to the well-known log-linear model

log mi; = u + u(l) + u(z) + uz(»;-z)

¢ | ci=1,...,0, §=1,...,J, (2.10)



with

U=+ ,
> Wi > W2
w |
ugl) = )\Z(»l) + log m; 2 Wi log ,
> Wi
Swoy, logm
u§2) :)\§ ) +logm.,; — Z] 2 083 , and
Zj w2j
“Z(JI'Q) _ )\Z(Jl?)

The parameters of model (2.10) satisfy also the constraints (2.8). Considering uniform
weights, (2.8) are reduced to the traditional constraints used in the log-linear models
framework. Since rank(A) = K, model (2.10) is equivalent to the standard association
model RC(K) in (2.1).

2) Consider the power divergence loss function f,(z) = [z"t!' —z+7r(1—x)]/[r(r+1)],
r # —1,0 (see Read and Cressie, 1988, p.128), for which F(z) = f/(z) = (" — 1)/r,
i.e. the Box and Cox (1964) power transformation. Then, model (2.7) becomes

K 1/r
l+r (az’ +B+ Y. ¢kﬂik1/jk> ; (2.11)
k=1

Tij = T3 T4

which is essentially equivalent to the power model of Baccini et al. (1993). For K =1
the model is first introduced by Rom and Sarkar (1992). Notice also that in the
special case 7 = 1 and for marginal weights, model (2.11) reduces to the canonical
correlation model CA(K) in (2.4), while for 7 — 0 it coincides with the association
model RC(K), since lim, o fr(x) = fo(z).

3 Main results

As already mentioned in the Introduction, the predominant criterion for collapsibility
is that of homogeneity. Goodman (1981b, 1986) connected homogeneity to association
models by stating that the equality of the scores in the saturated association model,
RC(M), implies homogeneity of the corresponding categories. Later, Gilula (1986)
proved the equivalence of these two issues for the saturated canonical correlation
model CA(M). In Theorem 3.2 below, we extend this result for the generalized
association model RC[f](K), for any choice of the divergence measure f and for any
K< M.

The following lemma provides two useful equalities connecting the interaction
parameters of the generalized linear model (2.7) with corresponding row or column
scores. They are originally derived by Goodman (1996, p.421).



Lemma 3.1. Let IT = (m;;) be an I x J contingency table with structure RC[f](K)
given by (2.6), K < min(I,J) — 1. Then, for 1 < s,t <1, 1< p,q < J, the following
equalities hold.

J K
Zij(ASQ) - ASQ))Q > btk — par)” (3.1)
j:l k=1

I K
S w(Ay? =202 = S R v — v)? (3.2)
=1 k=1

Since wa;, ¢7 are strictly positive for all 4, k, equality (3.1) implies that ps = pu,
k=1,... K, if and only if ! = AU®, j = 1,...,J, that is, A has its s-th and
t-th rows identical. The analogous conclusion follows from (3.2) for the p-th and g-th

columns of A.

Theorem 3.2. Let IT = (m;;) be an I x J contingency table with structure RC[f](K)
given by (2.6), K < min(I —2,J —1). A necessary and sufficient condition for two
distinct rows s and t of II to be homogeneous is that pgp = per, k=1,..., K, where

sk and pg are the s-th and t-th row scores of the underlying generalized association

model RC[f](K).

Proof. Set Fij = F(m;;j/m;.m.;). Then, by (1.1), homogeneity of the rows s and ¢ is
equivalent to

Fgi=F;,7=1,...,J, (3.3)
since F' is a strictly monotone function. Furthermore,
Foj—Fy =00 =AM+ 007 a0y j=1,...,7. (3.4)

Sufficiency. Let pg = e, £ = 1,..., K, or equivalently, )\2;2) = )\8-2), j =

1,...,J. Then, (3.4) becomes Fy; — Fj; = )\gl) — )\gl), j=1,...,J. Assume that
)\gl) _>\§1) is positive (resp., negative). Since F' is a strictly increasing function, it holds
Tsj/ms. > (vesp., <) my /7., 7 =1,...,J. The last equality leads to a contradiction
since both sides add up to 1. Hence, /\2” — )\ﬁl) = 0 and Fy; = Fy; for all j, i.e. rows

s and t are homogeneous.
Necessity. Multiplying both sides of (3.4) by ws; and adding over j yields
J
Ay _ 2= w2 (Fy — Fy)

S t = . (35)
Sy wa

Using (3.3), (3.4) and (3.5) it follows that )\SQ) = )\SQ) for all j and thus pg = p,
k=1,....K. O




Remark 3.1. Notice that in Theorem 3.2, the order K of the generalized association
model is taken at most min(/ — 2,J — 1) rather than min(/ — 1, J — 1) which is its
usual upper bound. This will be clarified after the presentation of Theorem 3.3 below.

Remark 3.2. From the proof of Theorem 3.2 arises that homogeneity of two rows is
equivalent to equality of the corresponding interaction and main effect parameters in
the generalized linear model (2.7). Moreover, the weighted euclidean distance

J
Tst — ZU}QJ‘(FSJ‘ - th)Q (36)
7=1

can measure the inhomogeneity of rows s and ¢, with a value of zero indicating ho-
mogeneity. For the special case of canonical correlation model, rg; becomes the chi—
squared distance between s-th and ¢-th row profiles (Benzécri, 1973).

The formulation of Theorem 3.2 for two homogeneous columns is obvious as well
as its extension to the general case of multiple collapses of sets of homogeneous rows
or/and columns. An interesting issue is that when performing collapses over ho-
mogeneous categories, the structure of the association of the reduced table remains
unchanged, as the following theorem states. For simplicity, this theorem is also ex-
pressed for the case of collapsing two homogeneous rows while the more general result
is provided by Corollary 3.4 below.

Theorem 3.3. Let IT = (7;5) be an I X J contingency table with structure RC[f](K),
K < min(I — 2,J — 1), having homogeneous rows s and t. Let also T = (7;;) be the
(I — 1) x J table obtained by collapsing these homogeneous rows. Then, the structure
of II is the same as that of TI, i.e. RC[f](K).

Proof. Without loss of generality consider s < ¢ and place the sum of the homogeneous

rows s and ¢ at row s. Then,

Tij , 1<8, s<i<1,
7~Tij = Tsj + Tt 1=25, (37)
Tit1,j , 12t

and since 7y /7s. = 7s;/T,., T.; = 7.5, one has

~ Fi; , 1<t
Fyy = F(7tg;/7s.m.5) = 3.8
ij (s /Ts.75) { Fir, , i>t. (3.8)
Let the generalized linear model expression for F = (Fij) be
Fy=24+ A0 43P 20 =1, 01, =1,...,7, (3.9)

8



with Y adY = Y7 a3 = Y audl? = S an a0 = 0, where
w1;’s are related to wy;’s of the initial model (2.7) by the analog of (3.7), while wy; =
waj, j =1,...,J. Since RC[f](K) is the underlying model for II, then rank(A) = K,
where A = ()\Z(JI-Q)) is the corresponding interaction parameters matrix in (2.7). Due
to the homogeneity of rows s and ¢, it holds by Theorem 3.2 that A has its s-th and
t-th rows equal. It can be seen that the matrix A = (5\82)) arises from A by deleting
its t-th row. Obviously, rank(A) = rank(A) = K and thus the underlying model for
II is also RC[f](K). By Lemma 2.1 the choice of weights does not affect the order of

the model. O

Remark 3.3. It is clear now the demand of K < min(/ — 2,.J — 1) in Theorems 3.2
and 3.3. Since the order of the generalized association model remains the same for
the collapsed table I:I, K has to be consistent also with its size. As a consequence,
if the initial’s table structure is RC[f](M), i.e. saturated, then it is not possible to
exist any homogeneities in the smallest dimension. In the special case of a square
contingency table with saturated structure, there are not any homogeneities at all.

Remark 3.4. Defining weighted euclidean column distances in analogy to rg in (3.6),
it can be seen that when collapsing homogeneous rows these column distances do not
change. This generalizes the principle of distributional equivalence of Benzécri (1973).

Corollary 3.4. Let 1= (7i;) be the IxJ table obtained by collapsing all homogeneous
rows and columns of TI (j <1, J < J). Then, the collapsed table IT will have the
same structure, RC[f](K), K < min(I,J) — 1, as the initial table TI.

The parameters of the RC[f](X) model for the collapsed table IT are connected
to the parameters of the corresponding model for the initial table IT as stated below.

Corollary 3.5. Let Ay,...,A; (resp., By,...,Bj) be the partition of A ={1,...,1I}
(resp., B = {1,...,J}) formed by homogeneous rows (resp., columns) of II with
structure RC[f](K), K < min(I,J)—1. Then, the cell probabilities of II are given by

K
Fgr = Rg i <A+xgl>+x;2>+z¢k,;qu,k> L og=1,....1,r=1,...,J,
k=1

(3.10)

with
S\gl)zkgl), iGAq, g=1, 7I~7 3.11
5‘7("2):>‘§'2)7 JEB,, T=1, j7 3.12



provided that the weights for the collapsed table are

’LZ)lq:Z’wli7 q:]_,...,f, Wop = Zij’ 'r:]_"”’j' (3]_5)
€Ay j€B,

PTOOf. Let F = (Fij), F = (Fij), where FZ']' :~ F(?TQ’/?TZ'.W.]'), Fij’ = F(7~TZ']'/7~TZ'.7~T.j).
Under (3.15), the interaction parameters matrix A for F arises from the corresponding
matrix A for F by deleting appropriate rows and columns (see also the proof of
Theorem 3.3). Let M = (fiqr) and N = (i4), where figk and Dy, are as in (3.13)
and (3.14). It can be seen that A = M®N’ and, due to (3.15), M'W ;M = N'W,N
= Ix, where W, = diag(@1,. .. , ) and W, = diag (s, . . . ,Wy5). Thus, M and
N are the matrices containing the left and right singular vectors of A orthonormalized
with respect to W, and Wy. The uniqueness of the GSVD ensures that the fig’s
and 7,;’s are the row and column scores of the RC[f](K) model for II. Moreover,
relations (3.11) and (3.12) are justified by Remark 3.2. O

Condition (3.15) is satisfied by the marginal weights. Hence, if marginal weights
are used, the RC[f](K) model’s parameters for table IT are immediate provided from
the corresponding parameters for IT by (3.11) — (3.14). On the other hand, (3.15) is
not satisfied by the uniform weights. Thus, marginal weights are preferable over the
uniform ones since they preserve the invariance of the parameters under collapsing.

4 An illustrative example

Although, as mentioned in the Introduction, the detection of homogeneous categories
may be done by testing independence in corresponding subtables, Theorem 3.2 allows
for an alternative approach. Since homogeneity of, say, rows s and ¢ is equivalent to
the equality of the corresponding row scores, one may consider the hypothesis

Hg’tzﬂsk:Mtka k=1,....,K,

a significance test of which can be based on any asymptotically normally distributed
estimators of p’s. In the literature, there are algorithms calculating maximum likeli-
hood estimators for the parameters of correlation and association models as well as
their covariance matrix (see Gilula and Haberman, 1986 and Haberman, 1995) as well
as results about generalized least squared estimation in power models (see Baccini et
al., 2000). Having obtained the estimators one can compute appropriate Mahalanobis
distances and checking their significance by comparing with an upper quantile of the
chi-square distribution with K — 1 degrees of freedom. A non-significant distance
indicates homogeneity of the corresponding categories. Note that so far in the related

10



literature collapsing of categories based on the equality of the corresponding row or
column scores was illustrated only for the case K = 1 and equality was decided upon
simple observation of closeness without performing any test of significance.

We materialized the above described procedure for the classical association model
RC(K), which is the most well-known member of the class of generalized association
models, using Haberman’s (1995) algorithm. A drawback of this algorithm is that
there is no option of selecting weights being restricted to the case of uniform ones.
We modified it appropriately, in order to control the use of weights.

The procedure is applied on the data provided in Table 1 which origins from
Wermuth and Cox (1998) and classifies adults in Germany according to age and type
of their education. Model RC(2) is appropriate for the table (see Table 2) and applying
the modified Haberman’s algorithm we confirm that only the last two columns (4 and
5) are homogeneous and we collapse them. As expected (by Theorem 3.3), the RC(2)
model is the most parsimonious describing the data also for the collapsed table (see
Table 2). For the RC(2) model the scores’ estimates for the initial table as well as
its collapsed version are provided in Table 3 for the cases of uniform and marginal
weights.

Wermuth and Cox (1998) suggested the grouping of columns 4 and 5 as well, but
they reduced further the table by collapsing rows 1 and 2. This is a decision based on
the acceptable fit (p—value = 0.078) of the independence model of the 2 x 4 subtable
formed by the first two rows and after collapsing the last two columns. It is also
consistent with the natural motivation to group the first row, which has relatively
small frequencies. However, the corresponding Mahalanobis distances using either
uniform or marginal weights are both significant indicating that these rows are not
homogeneous. This can be observed clearer in Figure 1, based on the RC(2) model,
where the row scores of the first two rows are close for the first axis but apart for the
second. Notice also in Table 3, that when using marginal weights, the scores’ change
for the first reduced table is negligible with respect to the initial table, whereas the
corresponding change for the second one is more substantial, especially for the second
axis. This is in agreement with Corollary 3.5.

5 Discussion

Summarizing, our major point to make is that there exist no contradiction between
homogeneity and structural criteria. Whenever we collapse homogeneous categories,
the underlying association structure is not affected. Nevertheless, if in practice hap-
pens after collapsing categories for which we have the indication that they are ho-
mogeneous, a simpler model to be appropriate for the reduced table, we have to be

11



cautious. The assumption of either the homogeneity or the association structure’s or-
der for one of the two tables is false. It can not be the case that all these assumptions

are correct but not in agreement.

In the association models framework, there are special association structures,
which assume the row or/and column scores in (2.1) as known. In particular, for
K =1, if the column (resp., row) scores are pre-specified (equidistant) we are led to
the Row (resp., Column) effect model, denoted by R (resp., C). If further all scores are
considered as known, the Uniform (U) association model is achieved. Extensions of
this type of models for K > 1 have been considered by Goodman (1981a) and Kateri
et al. (1998). We would like to emphasize that Theorem 3.3 refers only to RC—type
models and can not be applied to the special association models, mentioned above.
For example, the U model, by its definition, can never express the structure of an
initial table in presence of homogeneities, i.e. some of the row or/and column scores
being equal. However it can be the case the underlying association structure to be of
the U-type, the U model to be consistent with the collapsed table but not with the
initial one due to the homogeneity noise. Analogous observations can also be done
for other models of this type. So far this has been faced as a structural contradiction
and collapsings have been rejected (Goodman, 1981b).

It is important to highlight that the existence of homogeneities among classifica-
tion categories is transferred to equalities of the corresponding scores and vice versa,
for any choice of the link function F' of the RC[f](K) model, with K not necessarily
remaining constant for different choices of f. However, in case of independence then
K = 0 for all possible choices of f.

From a different point of view, it is sometimes preferable not to combine in-
distinguishable categories but only appreciate their similarity (Anderson, 1984 and
Goodman 1985, 1986). For example, in the association models framework, when the
scores’ ordering of an ordinal classification variable is violated or two scores are close,
Goodman equates them but does not collapse the corresponding categories (see also
Gilula and Haberman 1986, 1988). Hence, collapsibility is a matter of policy. When
equating the scores of the homogeneous categories without collapsing them, we are
led to a model of better performance, since the fit remains approximately the same
while the degrees of freedom are augmented (less parameters due to scores’ equality).
On the other hand when we collapse the categories, the performance of the model
seems worse since the fit remains the same while the degrees of freedom become less
due to the reduction of the table.

In the case of commensurable classification variables (usually occurring in the
framework of panel data) the grouping of categories has to be applied simultaneously
to rows and columns (Goodman, 1981b). It is straightforward to adapt Theorems

12



3.2 and 3.3 for this special case. In this framework, it is sometimes meaningful to
impose the additional constraint p; = v, ¢ = 1,..., 1, k =1,...,.K < M, ie.
assume symmetric interaction. When K = M, it will be equivalent to the generalized
model of Quasi Symmetry (QS|f]), based on f—divergence, introduced by Kateri and
Papaioannou (1997). For K < M, it will be a special case of the QS[f] model. In the
panel data framework it is often the case that large frequencies occur on the main
and secondary diagonals and the table is sparse at the corners. Also in some cases,
from the nature of the data, there exists no diagonal (athletic data: games results,
for example). These tables need special care and research could be developed towards
these directions.
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Age Group

Type of Schooling 1829 30-44 45-59 60-74 >74

basic, incomplete 12 13 12 20 7
basic, complete 215 507 493 460 137
medium 277 300 192 126 38
upper medium 52 91 47 15 6
intensive 233 225 102 74 19

Table 1: Classification of adults according to age and type of their education.

Model G? d.f. | p-value | Change of G*(I) from the initial
table (p-val. for the change)

I 357.146 | 16 .000 Initial Table

RC 24.275 9 .039

RO2) | 2599 | 4 | .627

I 356.310 | 12 .000

RC 23.487 6 .001 Collapsed columns: 4, 5

RC(2) 1.809 2 .405 .835 (.934)

I 349.487 9 .000

RC 16.677 4 .002 Collapsed rows: 1, 2

RO(2) | 1800 | 1 | .178 6.823 (.078)

Table 2: Models’ fit for Table 1, the table with collapsed columns 4 and 5 and the
table with additionally collapsed rows 1 and 2.
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Uniform weights | Marginal weights
Initial Table Initial Table
b1 — 1.783 é2 = 690 é1 = 315 b2 = .082
[i1-SCOTeS | Vj1-SCOres | pz-scores | vj-scores || pi1-scores | vj1-SCOTes | [1;2-SCOTes | vjz-scores
-.575 .529 -.431 -.684 -.701 1.522 3.952 1.025
-.484 428 .605 .400 -.972 .365 -.158 -.941
.168 .073 -.209 .b73 761 -.573 434 -.898
b17 -.520 467 -.181 1.192 -1.243 -3.295 1.165
374 -.511 -.432 -.107 1.293 -1.286 .496 1.014
Collapsed Table (columns 4, 5) Collapsed Table (columns 4, 5)
b1 = 1.462 b2 = 0.680 é1 = 315 b2 = .082
[i1-SCOTes | Vj1-Scores | pz-scores | vj-scores || pii-scores | vj1-SCOres | pi2-SCOres | vjs-scores
-.549 .506 -.468 -.666 -.698 1.522 3.987 1.027
-.518 .356 .579 421 -.972 .365 -.159 -.943
.180 -.081 -.197 541 761 -.573 436 -.896
.489 -.781 492 -.296 1.191 -1.253 -3.284 1.130
.399 -.406 1.293 .489
Collapsed Table (columns 4, 5 and rows 1, 2) Collapsed Table (columns 4, 5 and rows 1, 2)
é1 = 1.189 b = 492 é1 = 314 b2 = .069
[i1-SCOTes | Vj1-Scores | pz-scores | vj-scores || pii-scores | vj1-SCOres | pi2-SCOres | vjs-scores
-.843 .662 .072 -.509 -.963 1.515 -.044 1.032
-.096 .234 -.374 .495 760 371 532 -.933
.361 -.219 787 505 1.198 -.569 -3.868 -.910
387 -.677 -.485 -.491 1.293 -1.259 617 1.126

Table 3: Intrinsic association parameters and scores estimates for the RC(2) model
fitted on Table 1 and on the reduced tables using uniform and marginal weights.
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Figure 1: Estimated scores for the RC(2) model fitted on Table 1 using uniform and

marginal weights.
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