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ABSTRACT

On the basis of an observation from the binomial distribution B(n,p) with known pro-
bability of success p, we construct two classes of admissible estimators of the parameter
n € {1,2,...} when the loss function is the squared error. The estimators are either proper

Bayes or limits of Bayes estimators.

1. INTRODUCTION

Let X be an observation from the binomial distribution B(n,p), where the probability
of success p = 1 — ¢ is a known constant in (0,1) and n € Nt = {1,2,...} is an unknown
parameter. This context arises in many situations, e.g. estimation of finite population size
[cf. Mukhopadhyay (1)] or simple random sampling with replacement. Moreover, a practical
application in an animal counting problem has been discussed by Rukhin (2).

In this paper we consider decision theoretic estimation of n under the squared error loss,
Li(6,n) = (6§ —n)*.
and the scaled squared error loss,

Ly(d,n) =n""(0 —n)* .
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According to Casella (3) the latter is the most natural loss function for estimating n. Off
course, the admissibility problem of the estimators is not affected when L; is replaced by Ls.
However, in our approach the scaled squared error loss leads to more “ordinary” estimators,

that is, estimators of the form
00)=c, 6(X)=aX+b, X>1, (1.1)

for some constants a, b, ¢ = ¢(a,b). This is the usual form of estimators of n appeared so
far in the literature.

When the parameter space is assumed to be N = {0,1,2,...}, the natural estimator
of nis 8 = X/p. Rukhin (2) and Ghosh and Meeden (4) showed that this estimator has
optimal properties; it is the only unbiased estimator and is admissible and minimax under
quadratic loss. Other relevant work has been done by Feldman and Fox (5), Hamedani and
Walter (6), Sadooghi-Alvandi and Parsian (7) (who consider estimation under the asymmet-
ric LINEX loss function) and Yang (8) (who provides a characterization of the admissible
linear estimators aX + b under squared error loss).

In the more realistic case of the truncated parameter space, i.e., n € N* = {1,2,...}, the
estimator ¢° is clearly inadmissible under any convex loss. Under squared error, Sadooghi-

Alvandi (9) showed that this is also the case for its obvious modification, i.e., the estimator
SF0)=1, &X)=X/p, X>1.
In the same paper, Sadooghi-Alvandi proved the admissibiliy of the estimator
0°(0) = —q/plogp , 6" (X)=X/p, X >1, (1.2)

which is the generalized Bayes estimator of n under the improper prior m(n) = 1/n, n =
1,2,... [see also Ghosh and Meeden (4)]. Sadooghi-Alvandi and Parsian (7) obtained anal-
ogous results under LINEX loss. Recently, Zou and Wan (10) established an explicit result
for estimators of the form (1.1). We restate it here because we will often refer to it in the

sequel.



Theorem 1.1. [Zou and Wan (10)] The estimator

b(a—1)a® : X =0 :

Sap(X)=¢ (1.3)
aX+0ba—-1) , X>1,

is admissible if and only if one of the following three conditions is satisfied: (i) a = 1; (ii)
l<a<l1l/pandb> —1; (i) a=1/p and —1 < b < 0.

The above class includes Sadooghi-Alvandi’s (9) estimator 6* in (1.2) as a special case (a =

1/pand b — 0). In their paper, Zou and Wan (10) have also mentioned an estimator resulting

from (1.3) by letting @ — 1 and b — oo in such a way that b(a — 1) — logc (¢ > 1), that is,
cloge =

g , X =0,
0c(X) = (1.4)
X+loge , X>1.

However, they have not proved its admissibility. Notice that the most of the admissibility
results of Zou and Wan described in Theorem 1.1 have been established by assigning negative
binomial priors to n truncated in N* and obtaining either the corresponding (unique) Bayes
estimators or their limits.

In what follows we provide some new estimators of n when the parameter space is N7,
Letting n — 1 have Poisson or negative binomial prior (rather than n having a truncated one)
we obtain the corresponding Bayes estimators with respect to L; and L,. In Section 2 we
consider a Poisson prior which results in Bayes estimators of the form

c+1 , X=0,

T.(X) = 15
() Xdet—0 | X>1. (15)
X+ec

These estimators are admissible for any ¢ > 0. Moreover, under L, it will be seen that the
resulting Bayes estimator is essentially . in (1.4) and this proves its admissibility. In Section

3 we consider a negative binomial prior and we get under L the class of Bayes estimators

1+ 7r6q/(1 —0q) , X=0,

Tro(X) = X N rfq (r—1)bq -1 (1.6)
1—6g 1—-6g X+ (r—10q °’ -




where r > 0, 0 < 6§ < 1. These estimators are also admissible. Furthermore, we explore the

limiting cases. When r — 0, Ty ¢ is admissible, whereas when 6 — 1, T, ; is not.

2. BAYES ESTIMATORS UNDER A POISSON PRIOR

Let X ~ B(n,p) where p € (0,1) is a known constant and n € N* = {1,2,...} is an

unknown parameter. That is, the probability mass function of X is

n!
- " et x=01,....n,
faln) = s pa e =01
where ¢ = 1 — p. Let the prior distribution of n be
N )\nfl
m(n) =e e n=1,2,..., (2.1)

i.e.,, n—1~ P(A) (Poisson with mean \), A > 0. Then, the posterior distribution is

e_)‘Q(’\q)nf,l , n=12..., x=0,

SCIOES S
— n q —
e q$+kq = n=xz,z+1,..., z>1.

It is well-known that the Bayes estimator of n under L; is the posterior mean, E,(n|z).
Obviously, Ex(n|0) = 1 + Ag, since conditionally on X = 0, n — 1 ~ P(Ag). On the other

hand, for z > 1,

Baale) = 3 es(-a) 0
T +1Aq ,i(x Fa) en(=Xg) Mri]!)n
= - +1/\q {2 +220q + \g + \2¢°}
= x—i—)\q+$_}i\_q)\q )

It can be seen that the Bayes estimator of n is T, defined in (1.5) with ¢ = Ag > 0. Since
it is the unique Bayes estimator under (2.1) it is admissible. Taking ¢ = 0 we are led to the
limiting estimator

To(0) =1, To(X)=X, X>1.

The admissibility of Ty follows by Theorem 1.1, since it is the same as d1 ¢ in (1.3). Summa-

rizing, we have the following proposition.



Proposition 2.1. For any ¢ > 0, the estimator T, in (1.5) is admissible for n under the

squared error loss.

Consider now Bayesian estimation of n under the loss function L,. Then, the Bayes
estimator is the reciprocal of the posterior expectation of n=!, ie., 1/Ex(n"!|X). Under

(2.1) it holds
(A"

n!

B\n0) = 3 exp(-A)

1
= P(Y > 1) [whereY ~ P(\qg)]
1 — exp(—Aq)
Aq
and
T+ Aq exp(=Aq) (n —x)!
g (Ag)

Ex(n'z) = f:

1 © (
= exp(—
T+ N = P

1
= >1.

Thus, the Bayes estimator of n with respect to Lo is given by

)

=M X =0
T/((X) _ l—exp(—Aq) 7 ’
X+XNqg , X>1.

Since it is also the unique Bayes estimator and admissibility under L is equivalent to ad-
missibility under Ly, T} is admissible. Setting Ag = loge, ¢ > 1, it is seen that T} coincides

with d. in (1.4). Thus,

Proposition 2.2. For any ¢ > 1, the estimator 6. in (1.4) is admissible for n under the

squared error loss.

3. BAYES ESTIMATORS UNDER A NEGATIVE BINOMIAL PRIOR

Assume now that the prior distribution of n is

Cir+n-1) g1

7Tr,9(n) = T(l - Q)T (n — 1)| ;

n=12,..., 7r>0,0<0<1,
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ie,n—1~ NB(r,1—80) (negative binomial with parameters r, 1 — ). Then, the posterior

distribution of n is

r4+n— n-1
. (I_GQ)TF(FJF(T)U((?T)!> n=12 ..., x=0,
mro(nlz) = (3.1)

n(1-0)"+* D{rn—1) (09)"*
z+(r—1)0q T'(r+z—1) (n—z)! ?

n=xz,z+1,..., x>1.

The derivation of the posterior means follows. When x = 0, we have
E,¢(n|0) =14 rfq/(1 —0q) , (3.2)
since conditionally on X =0, n—1 ~ NB(r,1 —60q). For x > 1,

(1= 00" Ty + 1= 1) (Bo)*~
x4+ (r—1D0¢g(r+z—1)(n—x)!
_ 1-0g & 201 _ gyrte1 Lr+n+2—1) (6g)"
B x+(r—1)9q7lz::(](m+n) (1=6q) Fr+z—-1) nl
1—46q 9 (r+x—1)fq
x+(r—1)9q{x 2 1—6q
(r+z —1)fq N (r+z—1)(r +z)(0q)*
1—06q (1—46q)?
_ x +(r—1)9q+ 0q r+r—1 ‘
1 —6q 1—6q 1—6q) xz+ (r—1)0q

From (3.2), (3.3) we conclude that the Bayes estimator of n is 7,4 in (1.6). Since T} is the

E.o(nlz) = Z

(3.3)

unique Bayes estimator of n, it is admissible for any » > 0, 0 < § < 1. Before stating the

corresponding proposition, we explore the limiting cases r — 0 and 6§ — 1.

Lemma 3.1. The estimator

X 0q

ToolX) = 1-0g X —0q

s admissible for n under the squared error loss for any 0 < 6 < 1.

Proof. For convenience, we will supress 6 from the subscript. The admissibility of Ty will be
established using a variant of the well-known limiting Bayes method due to Blyth (11) [see
also Lehmann and Casella (12), p.380]. Consider first the improper prior

n—1

m(n)=Cr+n-1) TR

6



Since I'(t) attains its minimum for ¢ € (0,00) at ¢ty ~ 1.46163 [cf. Abramowitz and Stegun
(13), p.259], it follows that m,.(n) > T'(ty) "' /(n — 1)!, n > 1, for any r > 0. The posterior
distribution of n is 7} (n|r) = 7 4(n|r) in (3.1), and the Bayes estimator of n with respect
to m, is T, (= T,p). It tends to Ty as r — 0. Let I(n > x) denote the indicator function

with the obvious meaning. The marginal distribution of X is

00 qI(r) =0
Z (z|n)m(n)I(n > x) = (1;331;(,+ 1
=t . x!(1_9;)rfz e+ (r—1fq, z>1.
Setting D, (n,z) = [T.(z) — n]* — [Ty(z) — n]°, the difference of the Bayes risks can be ex-
pressed as
Alr) = > Di(n,x)f(z[n)I(n > z)m(n)
n=1x=0
= > D.(n,0)f(0|n)m,(n) + Z Z D,(n,z)f(z|n)I(n > z)m.(n)
n=1 n=1z=1
= > D.(n,0)f(0|n)m,(n) + Z Z D, (n,x)rt(n|x)m,(x) . (3.4)
n=1 r=1n=x

The last equality is obtained by changing the order of summation (this is permitted since
the series converges for all » > 0) and using the identity f(z|n)m.(n) = 7} (n|x)m,(z).

The first term in (3.4) equals

2{(71—1— 17”_6’(2(]) —(n—l)z}q”F(r+n—1) (né"il)' =

i . rfq 2—n2 (4 ) o _
o 1—0q 1 n!

g\ & en 2rq & o
( a ) > ¢"T(r+n) i iq an”“f‘(r—i—n)n—:

1-6q) = I 1-0q =, !
o () - () -
(1—9(61)) <1ﬁq9(J> 0 el



(it holds r*T'(r) = rI'(r + 1) — 0). On the other hand, the inner sum of the second term is

equal to

B {[n—T(@)| 2]’} — B {[n — To(x)| 2]*} =
Var, (n|z) — {Varr(n|x) + [Er(n|z) — T0($)]2} =

2 _ 2 Oq ’ z(1 — bq) 2
—{T(z) = To(x)}" = —r (1 — 0q> [1 * (x —0q)(x+ (r —1)0q)|

since T,.(z) = E,(n|z). Hence, the second term in (3.4) equals

- z(1—0q) 2 p0* 0 (r+x—1)[z+(r—1)0q] __
(1 9q> Z{ (z— 9q x+(7" 1)911)} z!(1-fg)r+ o
( ) Z{ (z+1)(1—6q) ]2 PP 07T (r+a)[z+14(r—1)0g] _

(z4+1—0q)(z+1+(r—1)0q) (z+1)!(1—0g)r+=+1

P60 B (V)
(1

T—0y(1—bg® 39)

where

_y+ 1+ (r—1)bg (y+1)(1 - 0g)
h(y) = y+1 [ (y+1—0q)(y+ 1+ (r—1)fq)

and Y ~ NB[r, (1 —0)/(1 — 6q)]. Now, for any r > 0, y > 0,

y+1 < y+1 1
(y+1—=0g)(y+14+(r—1)0q) = (y+1—0¢9)% ~— (1 —0q)?

and, when r < 1, (y+ 1+ (r —1)0q)/(y + 1) < 1. Hence, for 0 < r < 1, h(y) is bounded

above by [(2 — 0q)/(1 — 0q)]?. Therefore, the quantity in (3.5) is in absolute value less than
Cr®I'(r), C being a positive constant not depending on r. Thus, it tends to zero as r — 0.
Since both terms in (3.4) tend to zero, A(r) — 0 and consequently, the estimator T = Tj g

is admissible for any 0 < 6 < 1.
Lemma 3.2. For any r > 0, the estimator

L+rq/p , X=0,

TralX) = g
X/p—l—rq/p—i—XJr(r g X>1,

15 tnadmissible for n under the squared error loss.
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Proof. When r = 1, the estimator becomes

1/p , X =0,

Ti1(X) =
X/p+q/p , X>1,

i.e., d1/p1 in (1.3), and by Theorem 1.1 it is inadmissible.
Consider now the case r # 1 (such that 7,1 can be written in a unified form) and define

the alternative estimator

X/p+rq/p+ Xf;(rl)f) , 0< X <ng,

X/p—l— Xﬁ(jnl_)l)q , X >mng.

T*

r,1,ng

(X) =

Obviously, if n < ng the two estimators do not differ and thus, they have equal risks. On

the contrary, for n > ng, their risks difference is

A(n) = B, {[T1(X) = nPI(X > no)} — En {[Tr1.00(X) — n]PI(X > n9)}
_ ;q) P(X > ny) Q%En{[% + X(f;(_rl_)‘f)q —n} I(X > no)} _
(2 ) 2B 105 ] 2B} )X )

Recall that E,(X/p —n) = 0. This implies that E,[(X/p —n)I(X > ng)] > 0 for any
0 < ng < n, the inequality being strict when ng > 1.

Suppose first that » > 1. Then, by taking ng = 0 it can be immediately seen that
A(n) > 0 for all n. For the case r < 1, notice that (r — 1)¢/(x + (r — 1)q) is strictly

}

for ng > (1 —r)(q¢ + 2p/r) (and n > ng). Thus, for suitably chosen ng, the estimator 7}'

r,1,ng

increasing in x > 1. Therefore, when ng > 1,
An) > m{ "'p (X >ng) +2E, l(r_l)q I(X > no)
plp X+ (r—1)q

rq rq 2(r —1)q )
> 2P (X>ny)[—+——2 >0
p ( 0)<p no+ (r—1)q

dominates 7, ; and the statement of the lemma is proved.

Proposition 3.1. For any r >0, 0 < 0 < 1, the estimator T, in (1.6) is admissible for n

under the squared error loss. If 0 =1, it is inadmissible for any r > 0.

9



The case r = 0, # = 1, corresponding to the estimator
To2(0) =1, Toa(X)=X/p—q/(X —q), X >1,

is not covered by Proposition 3.1. We feel that T ; is admissible but we were not able to
prove it. In particular, the Blyth’s method cannot be applied (this is usually the case when
a prior distribution depends on two hyperparameters and the generalized Bayes estimator
results by taking both to their extremes).

In closing we comment that the Bayes estimator of n under L, has the form

(T—l)eq -

T ,(X) = | (-00i=0-6a7] X=0,
i 1 (r=1)0

o X T ey o X 21

Setting a = 1/(1 — fq), b = r — 1, it can be seen that the above estimator is in fact d,; in

(1.3) and thus, its admissibility aspects are covered in detail by Theorem 1.1.
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