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ABSTRACT

On the basis of an observation from the binomial distribution B(n, p) with known pro-

bability of success p, we construct two classes of admissible estimators of the parameter

n ∈ {1, 2, . . .} when the loss function is the squared error. The estimators are either proper

Bayes or limits of Bayes estimators.

1. INTRODUCTION

Let X be an observation from the binomial distribution B(n, p), where the probability

of success p = 1 − q is a known constant in (0, 1) and n ∈ N+ = {1, 2, . . .} is an unknown

parameter. This context arises in many situations, e.g. estimation of finite population size

[cf. Mukhopadhyay (1)] or simple random sampling with replacement. Moreover, a practical

application in an animal counting problem has been discussed by Rukhin (2).

In this paper we consider decision theoretic estimation of n under the squared error loss,

L1(δ, n) = (δ − n)2 .

and the scaled squared error loss,

L2(δ, n) = n−1(δ − n)2 .

1Now at the Department of Statistics and Insurance Science, University of Piraeus, 80 Karaoli & Dimitriou

str., 18534, Piraeus, Greece.
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According to Casella (3) the latter is the most natural loss function for estimating n. Off

course, the admissibility problem of the estimators is not affected when L1 is replaced by L2.

However, in our approach the scaled squared error loss leads to more “ordinary” estimators,

that is, estimators of the form

δ(0) = c , δ(X) = aX + b , X ≥ 1 , (1.1)

for some constants a, b, c = c(a, b). This is the usual form of estimators of n appeared so

far in the literature.

When the parameter space is assumed to be N = {0, 1, 2, . . .}, the natural estimator

of n is δ0 = X/p. Rukhin (2) and Ghosh and Meeden (4) showed that this estimator has

optimal properties; it is the only unbiased estimator and is admissible and minimax under

quadratic loss. Other relevant work has been done by Feldman and Fox (5), Hamedani and

Walter (6), Sadooghi-Alvandi and Parsian (7) (who consider estimation under the asymmet-

ric LINEX loss function) and Yang (8) (who provides a characterization of the admissible

linear estimators aX + b under squared error loss).

In the more realistic case of the truncated parameter space, i.e., n ∈ N+ = {1, 2, . . .}, the

estimator δ0 is clearly inadmissible under any convex loss. Under squared error, Sadooghi-

Alvandi (9) showed that this is also the case for its obvious modification, i.e., the estimator

δ1(0) = 1 , δ1(X) = X/p , X ≥ 1 .

In the same paper, Sadooghi-Alvandi proved the admissibiliy of the estimator

δ∗(0) = −q/p log p , δ∗(X) = X/p , X ≥ 1 , (1.2)

which is the generalized Bayes estimator of n under the improper prior π(n) = 1/n, n =

1, 2, . . . [see also Ghosh and Meeden (4)]. Sadooghi-Alvandi and Parsian (7) obtained anal-

ogous results under LINEX loss. Recently, Zou and Wan (10) established an explicit result

for estimators of the form (1.1). We restate it here because we will often refer to it in the

sequel.
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Theorem 1.1. [Zou and Wan (10)] The estimator

δa,b(X) =


b(a−1)ab

ab−1
, X = 0 ,

aX + b(a− 1) , X ≥ 1 ,
(1.3)

is admissible if and only if one of the following three conditions is satisfied: (i) a = 1; (ii)

1 < a < 1/p and b ≥ −1; (iii) a = 1/p and −1 ≤ b ≤ 0.

The above class includes Sadooghi-Alvandi’s (9) estimator δ∗ in (1.2) as a special case (a =

1/p and b → 0). In their paper, Zou and Wan (10) have also mentioned an estimator resulting

from (1.3) by letting a → 1 and b →∞ in such a way that b(a− 1) → log c (c > 1), that is,

δc(X) =


c log c
c−1

, X = 0 ,

X + log c , X ≥ 1 .
(1.4)

However, they have not proved its admissibility. Notice that the most of the admissibility

results of Zou and Wan described in Theorem 1.1 have been established by assigning negative

binomial priors to n truncated in N+ and obtaining either the corresponding (unique) Bayes

estimators or their limits.

In what follows we provide some new estimators of n when the parameter space is N+.

Letting n−1 have Poisson or negative binomial prior (rather than n having a truncated one)

we obtain the corresponding Bayes estimators with respect to L1 and L2. In Section 2 we

consider a Poisson prior which results in Bayes estimators of the form

Tc(X) =


c + 1 , X = 0 ,

X + c +
c

X + c
, X ≥ 1 .

(1.5)

These estimators are admissible for any c ≥ 0. Moreover, under L2 it will be seen that the

resulting Bayes estimator is essentially δc in (1.4) and this proves its admissibility. In Section

3 we consider a negative binomial prior and we get under L1 the class of Bayes estimators

Tr,θ(X) =


1 + rθq/(1− θq) , X = 0 ,

X

1− θq
+

rθq

1− θq
+

(r − 1)θq

X + (r − 1)θq
, X ≥ 1 ,

(1.6)
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where r > 0, 0 < θ < 1. These estimators are also admissible. Furthermore, we explore the

limiting cases. When r → 0, T0,θ is admissible, whereas when θ → 1, Tr,1 is not.

2. BAYES ESTIMATORS UNDER A POISSON PRIOR

Let X ∼ B(n, p) where p ∈ (0, 1) is a known constant and n ∈ N+ = {1, 2, . . .} is an

unknown parameter. That is, the probability mass function of X is

f(x|n) =
n!

x!(n− x)!
pxqn−x , x = 0, 1, . . . , n ,

where q = 1− p. Let the prior distribution of n be

πλ(n) = e−λ λn−1

(n− 1)!
, n = 1, 2, . . . , (2.1)

i.e., n− 1 ∼ P(λ) (Poisson with mean λ), λ > 0. Then, the posterior distribution is

π∗λ(n|x) =

 e−λq (λq)n−1

(n−1)!
, n = 1, 2, . . . , x = 0 ,

e−λq n
x+λq

(λq)n−x

(n−x)!
, n = x, x + 1, . . . , x ≥ 1 .

It is well–known that the Bayes estimator of n under L1 is the posterior mean, Eλ(n|x).

Obviously, Eλ(n|0) = 1 + λq, since conditionally on X = 0, n − 1 ∼ P(λq). On the other

hand, for x ≥ 1,

Eλ(n|x) =
∞∑

n=x

n2

x + λq
exp(−λq)

(λq)n−x

(n− x)!

=
1

x + λq

∞∑
n=0

(x + n)2 exp(−λq)
(λq)n

n!

=
1

x + λq
{x2 + 2xλq + λq + λ2q2}

= x + λq +
λq

x + λq
.

It can be seen that the Bayes estimator of n is Tc defined in (1.5) with c = λq > 0. Since

it is the unique Bayes estimator under (2.1) it is admissible. Taking c = 0 we are led to the

limiting estimator

T0(0) = 1, T0(X) = X , X ≥ 1 .

The admissibility of T0 follows by Theorem 1.1, since it is the same as δ1,0 in (1.3). Summa-

rizing, we have the following proposition.
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Proposition 2.1. For any c ≥ 0, the estimator Tc in (1.5) is admissible for n under the

squared error loss.

Consider now Bayesian estimation of n under the loss function L2. Then, the Bayes

estimator is the reciprocal of the posterior expectation of n−1, i.e., 1/Eλ(n
−1|X). Under

(2.1) it holds

Eλ(n
−1|0) =

∞∑
n=1

exp(−λq)
(λq)n−1

n!

=
1

λq
P(Y ≥ 1) [where Y ∼ P(λq)]

=
1− exp(−λq)

λq

and

Eλ(n
−1|x) =

∞∑
n=x

1

x + λq
exp(−λq)

(λq)n−x

(n− x)!

=
1

x + λq

∞∑
n=0

exp(−λq)
(λq)n

n!

=
1

x + λq
, x ≥ 1 .

Thus, the Bayes estimator of n with respect to L2 is given by

T ′
λ(X) =


λq

1−exp(−λq)
, X = 0 ,

X + λq , X ≥ 1 .

Since it is also the unique Bayes estimator and admissibility under L2 is equivalent to ad-

missibility under L1, T ′
λ is admissible. Setting λq = log c, c > 1, it is seen that T ′

λ coincides

with δc in (1.4). Thus,

Proposition 2.2. For any c > 1, the estimator δc in (1.4) is admissible for n under the

squared error loss.

3. BAYES ESTIMATORS UNDER A NEGATIVE BINOMIAL PRIOR

Assume now that the prior distribution of n is

πr,θ(n) =
Γ(r + n− 1)

Γ(r)
(1− θ)r θn−1

(n− 1)!
, n = 1, 2, . . . , r > 0 , 0 < θ < 1 ,
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i.e., n− 1 ∼ NB(r, 1− θ) (negative binomial with parameters r, 1− θ). Then, the posterior

distribution of n is

π∗r,θ(n|x) =


(1−θq)r Γ(r+n−1)

Γ(r)
(θq)n−1

(n−1)!
, n = 1, 2, . . . , x = 0 ,

n(1−θq)r+x

x+(r−1)θq
Γ(r+n−1)
Γ(r+x−1)

(θq)n−x

(n−x)!
, n = x, x + 1, . . . , x ≥ 1 .

(3.1)

The derivation of the posterior means follows. When x = 0, we have

Er,θ(n|0) = 1 + rθq/(1− θq) , (3.2)

since conditionally on X = 0, n− 1 ∼ NB(r, 1− θq). For x ≥ 1,

Er,θ(n|x) =
∞∑

n=x

n2(1− θq)r+x

x + (r − 1)θq

Γ(r + n− 1)

Γ(r + x− 1)

(θq)n−x

(n− x)!

=
1− θq

x + (r − 1)θq

∞∑
n=0

(x + n)2(1− θq)r+x−1 Γ(r + n + x− 1)

Γ(r + x− 1)

(θq)n

n!

=
1− θq

x + (r − 1)θq

{
x2 + 2x

(r + x− 1)θq

1− θq

+
(r + x− 1)θq

1− θq
+

(r + x− 1)(r + x)(θq)2

(1− θq)2

}

=
x

1− θq
+

(r − 1)θq

1− θq
+

(
θq

1− θq

)
x + r − 1

x + (r − 1)θq
. (3.3)

From (3.2), (3.3) we conclude that the Bayes estimator of n is Tr,θ in (1.6). Since Tr,θ is the

unique Bayes estimator of n, it is admissible for any r > 0, 0 < θ < 1. Before stating the

corresponding proposition, we explore the limiting cases r → 0 and θ → 1.

Lemma 3.1. The estimator

T0,θ(X) =
X

1− θq
− θq

X − θq

is admissible for n under the squared error loss for any 0 < θ < 1.

Proof. For convenience, we will supress θ from the subscript. The admissibility of T0 will be

established using a variant of the well–known limiting Bayes method due to Blyth (11) [see

also Lehmann and Casella (12), p.380]. Consider first the improper prior

πr(n) = Γ(r + n− 1)
θn−1

(n− 1)!
, n = 1, 2, . . . .

6



Since Γ(t) attains its minimum for t ∈ (0,∞) at t0 ≈ 1.46163 [cf. Abramowitz and Stegun

(13), p.259], it follows that πr(n) ≥ Γ(t0) θn−1/(n− 1)!, n ≥ 1, for any r > 0. The posterior

distribution of n is π∗r(n|x) = π∗r,θ(n|x) in (3.1), and the Bayes estimator of n with respect

to πr is Tr (= Tr,θ). It tends to T0 as r → 0. Let I(n ≥ x) denote the indicator function

with the obvious meaning. The marginal distribution of X is

mr(x) =
∞∑

n=1

f(x|n)πr(n)I(n ≥ x) =


q Γ(r)

(1−θq)r , x = 0 ,

pxθx−1Γ(r+x−1)
x!(1−θq)r+x [x + (r − 1)θq] , x ≥ 1 .

Setting Dr(n, x) = [Tr(x)− n]2 − [T0(x)− n]2, the difference of the Bayes risks can be ex-

pressed as

∆(r) =
∞∑

n=1

n∑
x=0

Dr(n, x)f(x|n)I(n ≥ x)πr(n)

=
∞∑

n=1

Dr(n, 0)f(0|n)πr(n) +
∞∑

n=1

n∑
x=1

Dr(n, x)f(x|n)I(n ≥ x)πr(n)

=
∞∑

n=1

Dr(n, 0)f(0|n)πr(n) +
∞∑

x=1

∞∑
n=x

Dr(n, x)π∗r(n|x)mr(x) . (3.4)

The last equality is obtained by changing the order of summation (this is permitted since

the series converges for all r > 0) and using the identity f(x|n)πr(n) = π∗r(n|x)mr(x).

The first term in (3.4) equals

∞∑
n=1


(
n− 1− rθq

1− θq

)2

− (n− 1)2

 qnΓ(r + n− 1)
θn−1

(n− 1)!
=

∞∑
n=0


(
n− rθq

1− θq

)2

− n2

 qn+1Γ(r + n)
θn

n!
=

(
rθq

1− θq

)2 ∞∑
n=0

qn+1Γ(r + n)
θn

n!
− 2rθq

1− θq

∞∑
n=0

nqn+1Γ(r + n)
θn

n!
=

qr2Γ(r)

(1− θq)r

(
θq

1− θq

)2

− 2qr2Γ(r)

(1− θq)r

(
θq

1− θq

)2

=

− qr2Γ(r)

(1− θq)r

(
θq

1− θq

)2

−→ 0 as r → 0
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(it holds r2Γ(r) = rΓ(r + 1) → 0). On the other hand, the inner sum of the second term is

equal to

Er

{
[n− Tr(x)|x]2

}
− Er

{
[n− T0(x)|x]2

}
=

Varr(n|x)−
{
Varr(n|x) + [Er(n|x)− T0(x)]2

}
=

−{Tr(x)− T0(x)}2 = −r2

(
θq

1− θq

)2 [
1 +

x(1− θq)

(x− θq)(x + (r − 1)θq)

]2

,

since Tr(x) = Er(n|x). Hence, the second term in (3.4) equals

−r2
(

θq
1−θq

)2
∞∑

x=1

[
1 + x(1−θq)

(x−θq)(x+(r−1)θq)

]2 pxθx−1Γ(r+x−1)[x+(r−1)θq]
x!(1−θq)r+x =

−r2
(

θq
1−θq

)2
∞∑

x=0

[
1 + (x+1)(1−θq)

(x+1−θq)(x+1+(r−1)θq)

]2 px+1θxΓ(r+x)[x+1+(r−1)θq]
(x+1)!(1−θq)r+x+1 =

−p r2Γ(r)(θq)2 Er[h(Y )]

(1− θ)r(1− θq)3
, (3.5)

where

h(y) =
y + 1 + (r − 1)θq

y + 1

[
1 +

(y + 1)(1− θq)

(y + 1− θq)(y + 1 + (r − 1)θq)

]2

and Y ∼ NB[r, (1− θ)/(1− θq)]. Now, for any r > 0, y ≥ 0,

y + 1

(y + 1− θq)(y + 1 + (r − 1)θq)
≤ y + 1

(y + 1− θq)2
≤ 1

(1− θq)2
,

and, when r < 1, (y + 1 + (r − 1)θq)/(y + 1) < 1. Hence, for 0 < r < 1, h(y) is bounded

above by [(2− θq)/(1− θq)]2. Therefore, the quantity in (3.5) is in absolute value less than

Cr2Γ(r), C being a positive constant not depending on r. Thus, it tends to zero as r → 0.

Since both terms in (3.4) tend to zero, ∆(r) → 0 and consequently, the estimator T0 = T0,θ

is admissible for any 0 < θ < 1.

Lemma 3.2. For any r > 0, the estimator

Tr,1(X) =

 1 + rq/p , X = 0 ,

X/p + rq/p + (r−1)q
X+(r−1)q

, X ≥ 1 ,

is inadmissible for n under the squared error loss.
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Proof. When r = 1, the estimator becomes

T1,1(X) =

 1/p , X = 0 ,

X/p + q/p , X ≥ 1 ,

i.e., δ1/p,1 in (1.3), and by Theorem 1.1 it is inadmissible.

Consider now the case r 6= 1 (such that Tr,1 can be written in a unified form) and define

the alternative estimator

T ∗
r,1,n0

(X) =

 X/p + rq/p + (r−1)q
X+(r−1)q

, 0 ≤ X ≤ n0 ,

X/p + (r−1)q
X+(r−1)q

, X > n0 .

Obviously, if n ≤ n0 the two estimators do not differ and thus, they have equal risks. On

the contrary, for n > n0, their risks difference is

∆(n) = En {[Tr,1(X)− n]2I(X > n0)} − En {[Tr,1,n0(X)− n]2I(X > n0)}

=
(

rq
p

)2
P(X > n0) + 2rq

p
En

{[
X
p

+ (r−1)q
X+(r−1)q

− n
]
I(X > n0)

}
=

= rq
p

{
rq
p

Pn(X > n0) + 2 En

[
(r−1)q

X+(r−1)q
I(X > n0)

]
+ 2 En

[(
X
p
− n

)
I(X > n0)

]}
.

Recall that En(X/p − n) = 0. This implies that En[(X/p− n)I(X > n0)] ≥ 0 for any

0 ≤ n0 < n, the inequality being strict when n0 ≥ 1.

Suppose first that r > 1. Then, by taking n0 = 0 it can be immediately seen that

∆(n) > 0 for all n. For the case r < 1, notice that (r − 1)q/(x + (r − 1)q) is strictly

increasing in x ≥ 1. Therefore, when n0 ≥ 1,

∆(n) >
rq

p

{
rq

p
Pn(X > n0) + 2 En

[
(r − 1)q

X + (r − 1)q
I(X > n0)

]}

>
rq

p
Pn(X > n0)

(
rq

p
+

2(r − 1)q

n0 + (r − 1)q

)
> 0

for n0 > (1− r)(q + 2p/r) (and n > n0). Thus, for suitably chosen n0, the estimator T ∗
r,1,n0

dominates Tr,1 and the statement of the lemma is proved.

Proposition 3.1. For any r ≥ 0, 0 ≤ θ < 1, the estimator Tr,θ in (1.6) is admissible for n

under the squared error loss. If θ = 1, it is inadmissible for any r > 0.
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The case r = 0, θ = 1, corresponding to the estimator

T0,1(0) = 1 , T0,1(X) = X/p− q/(X − q) , X ≥ 1 ,

is not covered by Proposition 3.1. We feel that T0,1 is admissible but we were not able to

prove it. In particular, the Blyth’s method cannot be applied (this is usually the case when

a prior distribution depends on two hyperparameters and the generalized Bayes estimator

results by taking both to their extremes).

In closing we comment that the Bayes estimator of n under L2 has the form

T ′
r,θ(X) =


(r−1)θq

(1−θq)[1−(1−θq)r−1]
, X = 0 ,

1
1−θq

X + (r−1)θq
1−θq

, X ≥ 1 .

Setting a = 1/(1 − θq), b = r − 1, it can be seen that the above estimator is in fact δa,b in

(1.3) and thus, its admissibility aspects are covered in detail by Theorem 1.1.
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