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Abstract

In two recent papers by Balakrishnan, Kundu, Ng and Kannan (Journal of Qual-
ity Technology, 2007) and Balakrishnan, Xie and Kundu (Annals of the Institute of
Statistical Mathematics, 2009), the maximum likelihood estimators 6, and 0y of the
parameters 61 and 6 have been derived in the framework of exponential simple step-
stress models under Type-II and Type-I censoring, respectively. Here, we prove that
these estimators are stochastically monotone with respect to #; and 65, respectively,
which has been conjectured in these papers and then utilized to develop exact con-
ditional inference for the parameters #; and #>. For proving these results, we have
established a multivariate stochastic ordering of a particular family of trinomial dis-
tributions under truncation, which is also of independent interest.
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1 Introduction

An estimator 0 of a scalar parameter 6 is said to be stochastically increasing in 0 if its
survival function Pg(é > x) is an increasing function of 6 for any fixed x. This property
intuitively means that for larger values of 6 we will tend to observe larger values for 6.
However, besides intuition, the stochastic increasingness of 6 with respect to 0 also provides
a straightforward method of constructing confidence intervals for . The method, called
pivoting the cumulative distribution function (cdf) or, equivalently, the survival function

(cf. Casella and Berger, 2002, p. 432) proceeds as follows. Let fops denote the observed
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value of §. Choose aq, g satisfying o +ae = « (for example, a; = @y = a/2) and solve the
equations Pg(é > éobs) =y, Py (é > éobs) = 1— ay, for . The existence and uniqueness
of the solutions of these equations are guaranteed, of course, by the monotonicity of
Py (é > éobs) with respect to 6. If we denote by HL(éObS) < HU(éObS) these solutions, then

~ ~

(01 (Oobs), 0 (Oons)] is a 100(1 — )% confidence interval for 6.

In the literature, a series of papers appeared discussing the construction of confidence
intervals for the parameters of interest relying on the assumed stochastic monotonicity of
the corresponding maximum likelihood estimators (MLEs), but did not prove this prop-
erty. Among these are Chen and Bhattacharyya (1988), Kundu and Basu (2000), Childs
et al. (2003), and Chandrasekar et al. (2004) who derived the MLEs of the underlying pa-
rameter as well as their exact conditional distributions under different scenarios involving
censored samples from an exponential distribution, numerically verified that these MLEs
are stochastically increasing with respect to the parameter, and then assumed it to develop
exact inference for the parameter. In all these cases, the survival function of the MLE has

the mixture form

Po(f > z) =Y Py(D = d)Py(0 > z|D = d),
deD
where D is a finite set. Balakrishnan and Iliopoulos (2009) recently established a lemma

concerning the stochastic monotonicity of such mixtures, which proves the required mono-

tonicity of the MLEs in all the above mentioned cases.

Along the lines of developments mentioned above in the case of exponential distribution
under different forms of censored data, Balakrishnan et al. (2007, 2009) derived the MLEs
of the parameters #; and 65 of an exponential simple step-stress model and their exact
conditional distributions under Type-II and Type-I censoring, respectively. Once again,
being unable to formally prove the stochastic monotonicity of these MLEs and verifying it
only through extensive numerical computations, these authors used the monotonicity to
develop exact conditional inference for the parameters 6, and 6. In this paper, we prove
formally the required stochastic monotonicity results, thus justifying the exact conditional

inference developed in Balakrishnan et al. (2007, 2009).

The rest of the paper is organized as follows. In Section 2, we give a brief description
of simple step-stess models and detail the results concerning exact inference for the ex-
ponential simple step-stress model under Type-I and Type-II censoring. In Section 3, we

provide a slight generalization of the lemma proved by Balakrishnan and Iliopoulos (2009)



so that it becomes applicable in the case of mixtures wherein the mixing distribution is
multivariate. We then apply this generalized lemma to two exponential simple step-stress
models. Specifically, in Section 4, we consider the situation of Type-II censoring discussed
by Balakrishnan et al. (2007), while in Section 5 we consider the situation of Type-I cen-
soring discussed by Balakrishnan et al. (2009). We conclude the main part of the paper
in Section 6 with some final remarks. Finally, an appendix contains the primary work
in developing these results, namely, establishing the stochastic monotonicity of a partic-
ular family of trinomial distributions under truncation, which by itself is of independent

interest.

2 Step-stress accelerated life tests under censoring

Step-stress testing is a special case of an accelerated life testing experiment. Interested
readers may refer to the books by Nelson (1990), Meeker and Escobar (1998), and Bag-
donavicius and Nikulin (2002) for an elaborate treatment on accelerated life testing and
associated inferential issues. Under such an experiment, n identical units are placed on a
life test at an initial stress level ly. The stress level is successively changed to Iy, -,
at some (possibly random) timepoints 0 < T} < --- < T}, and the successive failure times
are recorded. The so-called simple step-stress model, corresponding to the case m = 1 in

this set-up, has been studied extensively in the literature.

Sedyakin (1966) and Nelson (1990) have considered the cumulative exposure model
which can be described as follows. Denoting by F} the distribution function of the lifetimes
at stress level [;_1, j = 1,2, the distribution function of the lifetimes under the simple
step-stress model is given by

Fi(x xz < T,
Fla) = { ij)’_ T +T;), Zi i 1
where T is the solution to the equation Fy(77) = F5(1}). Note that this guarantees the

continuity of the distribution function at the point 77.

Xiong (1998) considered an exponential simple step-stress model with Type-II censor-
ing at the second level of stress. More specifically, let Xy,---,X,, be the lifetimes of the
n identical units under test, 77 > 0 a fixed time point, and r € {2,--- ,n} a pre-fixed
integer. The test starts at the stress level [y which is changed to [; at time 77 and con-

tinues until the r-th failure is observed, at which time the test gets terminated. Xiong



used a simple linear regression model for the logarithms of the exponential mean lifetimes
and developed inference for its parameters. However, upon noting that the MLEs of the
exponential mean lifetimes 07 and 65 exist only when the number of failures occurring at
the first level (with the corresponding lifetimes being at most 7}) is at least 1 and at most
r—1, Balakrishnan et al. (2007) developed the exact conditional distributions of the MLEs
of the mean lifetimes and discussed exact as well as asymptotic inferential procedures and
bootstrap methods. Inference for this model has also been studied beyond the context of
exponential distribution; for example, Kateri and Balakrishnan (2008) recently discussed

the case of Weibull lifetimes.

Balakrishnan et al. (2009) considered a variation of the above model under time con-
straint, i.e., involving Type-I censoring rather than Type-II censoring at the second level
of stress. More specifically, they fixed another time point 75 > T} at which the life test
gets terminated instead of waiting until the r-th failure to occur. By assuming exponential

lifetimes once again, they developed exact inferential procedures for the model parameters.

In both these works, however, the validity of the exact inferential procedures relies
on the stochastic monotonicity of the MLEs of the exponential means at the two stress
levels which was only verified numerically by these authors and not proved formally. In

the following sections, we establish these monotonicity results formally.

3 Preliminaries and the basic lemma

For any x = (x1,---,2;) and y = (y1,- ,yx) € RF, we write y > x if y; > x; for all
i=1,---,k A set U C RFis called an upper set if x € U and y > x implies y € U.
Two random vectors X = (Xy,---,X) and Y = (Y3,---,Y%) are ordered in the usual
multivariate stochastic order, denoted by X <4 Y, if for any measurable upper set U, we
have P(X € U) < P(Y € U). An upper orthant is a special case of upper set, containing all
x € R¥ such that x > a for some a € R*. We will use the notation O(a) = O(ay,--- ,az)
to denote the upper orthant with minimum point a = (a1,--- ,a). A random vector X
is said to be stochastically smaller in the upper orthant ordering than another random
vector Y if P(X € O) < P(Y € O) for all upper orthants O. Clearly, the latter is weaker

than the usual multivariate stochastic ordering.

The usual multivariate stochastic order is characterized by the following: X < 4 Y



is equivalent to E{¢(X)} < E{¢(Y)} for any coordinatewise increasing function ¢ =
¢(z1,- -+ ,x). Obviously, this is equivalent to E{¢(X)} > E{¢(Y)} for any coordinatewise
decreasing function ¢. Note also that X <y Y if and only if there exist random vectors X

and Y defined in the same probability space such that X 4 X, Y Ay and X <Y (a.s.).

Suppose now that the survival function of a particular estimator 0 of a scalar parameter
0 has the form

Po(0 > 2) = > Py(D =d)Py(6 > z|D = d), (1)
deD

where D C R¥. Balakrishnan and Tliopoulos (2009) proved a lemma, called Three Mono-
tonicities Lemma (TML), which provides sufficient conditions for the stochastic mono-
tonicity of 6 with respect to 6 in the special case when k = 1. Here, we first extend this

result to any k > 1.

Lemma 1. [THREE MONOTONICITIES LEMMA — GENERAL CASE| Assume that the fol-

lowing hold true:

(M1) For all d = (dy,--- ,d) € D, the conditional distribution of 0, given D = d, is
stochastically increasing in 0, i.e., the function Pg(é > z|D = d) is increasing in
0 for all x and d € D;

(M2) For all x and 6 > 0, the conditional distribution ofé, given D = d, is stochastically
decreasing in d, i.e., the function ¢(d) = Pg(0 > z|D = d) is decreasing in every
di,i=1,--+k;

(M3) D is stochastically decreasing in 6, i.e., Eg{®(D)} < Eg{o(D)} when 6 < 0" for
any coordinatewise decreasing function ¢.

Then, 0 is stochastically increasing in 6.

Proof. The proof follows exactly along the lines of TML established by Balakrishnan and
Iliopoulos (2009) and is therefore omitted here. O

Due to this result, a proof of the stochastic monotonicity of 6 with respect to 6 may
be completed in three steps, viz., by establishing the three conditions of Lemma 1. Since
the above lemma coincides with the original TML of Balakrishnan and Iliopoulos (2009)

when k£ = 1, we will refer to this lemma also as TML in the sequel.



4 Simple step-stress model under Type-II censoring

We begin with the case of Type-II censoring as it is more easy to follow and simpler to
handle in this situation. By denoting Xi., < --- < X,,., for the ordered lifetimes and
defining Ny = #{X’'s < T\ }, the experimenter will observe one among the following three

situations:

Xl:n << Xr:n < Tl)
Xl:n << Xlen g Tl < XN1+1:n << sznv

Tl < Xl:n << Xr:n-

By writing down the corresponding likelihood function, it is easy to see that the MLEs
of both 6; and 05 exist only in the second case, i.e., when 1 < Ny < r — 1. Balakrishnan

et al. (2007) showed that these MLEs are given by

N1
él = Nil{lleln-f—(n—Nl)Tl} (2)

and

by — 1 { 3 (Xi:n—Tl)—f—(n—Nl—r)(XT;n—Tl)}. (3)

r — N
LN 1

They then proceeded to discuss exact inference for the parameters 6, and 65 just by verify-
ing the stochastic monotonicity of these MLEs through extensive numerical computations.
We will now formally establish the stochastic monotonicity of 6; and 6y with respect to

01 and 65, respectively, by using the TML presented in the preceding section.

4.1 Stochastic monotonicity of 0,

The survival function of #; can be expressed as

r—1

) Py (Ny =
Po(h >z[1 <Ny <r—1)= Z 5 6, (N1 = 1n1)
n1=1 1

1SN <r-1)

Po, (01 > z[Ny =n1).  (4)
Since the survival function is of the form (1) with D = {1,...,r — 1}, we can apply the
TML with k£ = 1.

(M1) We have to show that the conditional distribution of él, given N1 = nq, is stochas-

tically increasing in #;. To this end, recall that conditional on Ny = ny, (X1, , Xnym)



have the same distribution as (Z1.,,,"** , Zn,m, ), Where Z1,--+ | Zy, EY EONI(Z < Th),

that is, exponential with parameter 01 but right truncated at T7; see, for example, Arnold
et al. (2008). Hence, conditional on Ny = ng, 25\21 Xin 4 Sty Ziny, = oty Z;. Since
the above right truncated exponential distribution is stochastically increasing in #; and
Z’s are independent, the required result follows immediately.

(M2) Next, we have to prove that the conditional distribution of él, given N1 = nq,
is stochastically decreasing in nq. In order to prove this assertion, we will use standard
coupling. For any ny € {1,--- ,r—2}, let Z1,--- ,Zp,, Zn,+1 beiid from £(01)1(Z < T).
Then,

1 [
01|(N1 = n1) has the same distribution as —{ Z Zi+ (n— nl)Tl}
ny (“
=1

while

ni1+1
01/(Ny = n + 1) has the same distribution as Zi+(n—ny— 1Ty ;.
V= m ) ST Z

But,

1 ni 1 ni+1
S aromm) - (S Ao} -

i=1
it Zi+ (n—n)T + (T — Zp,41)
nl(nl + 1)

> 0,

which implies that Pg, (0, > z|N1 = ny) > Py, (61 > 2|Ny = ny + 1) for all z,6; > 0.
(M3) Finally, we need to verify that N is stochastically decreasing in ;. Note that (the
untruncated) Nj follows the binomial distribution B(n,1 — e¢~71/01). This distribution
has the monotone likelihood ratio property with respect to 6. It is well known that for
univariate random variables, this property is not affected by truncation and consequently,
Ni|(1 < Ny <r—1) is stochastically decreasing in 6;.

Thus, the stochastic monotonicity of 61 with respect to 6; follows.

Remark 1. Note that, in almost every respect, 0; is very similar to the MLE of #; under
standard Type-I censoring. Consider a random sample Y7, --- .Y, from the exponential
distribution £(#;) which is observed up to the point T;. Setting Ny = #{Y’s < T1}, the
MLE of 6, exists for N1 > 1 and is equal to 0, (with Y’s in the place of X’s). Its exact



distribution has the form

R P =
Pgl (01 > x\Nl >1 Z PG; )) Pgl((gl > .’L“Nl = nl)
1

This is the same as the expression in (4), but with a slightly different mixing distribution.

4.2 Stochastic monotonicity of 0y

Balakrishnan et al. (2007) showed that the survival function of s is given by

r—1
R Po. (N1 =n
Po, (02 > 2l <Ny <r— 1) = ) 5 (1‘91<(N11 1) Y
1

Tl1:

PQQ(éQ > .%"Nl = nl),

with the conditional distribution of 65, given N7 = nj, being gamma G (r —nq, Tffu).
The gamma distribution is stochastically increasing in its scale parameter, and so Py, (ég >
x|N1 = mq) is increasing in 2. By noting that the mixing distribution does not depend
on 9, we conclude that the above survival function is increasing in 69 for any fixed z, i.e.,

0> is stochastically increasing in o, as required.

5 Simple step-stress model under Type-I censoring

Balakrishnan et al. (2009) considered the following exponential simple step-stress model
under time constraint. Let 0 < Ty < T be two pre-specified time points. Then, n identical
units are placed on a life test at some stress level. At time 77, the stess level is changed
and the experiment terminates at time T5. Let Xq,---,X,, be the lifetimes of the units,
N7 be the number of failures at the first stress level, and Ny be the number of failures at
the second stress level. Clearly, there is a chance of observing N7y = 0 or/and Ny = 0.
However, we will restrict our discussion to the most interesting case when N; > 1, j = 1,2,

in which the experimenter observes data of the form
Xl:n <0 < XNl:TL < Tl < XN1+1:TL <0 < XN1+N2:TL < T2'

In fact, this is the only case in which the MLEs of both 8; and 6, exist, and are given by

Ny
0, = Nil{ilei:n'f’(n_Nl)Tl} (5)



and

Ni1+N2

0y = N%{ > (Xm—T1)+(n—N1—N2)(T2—T1)}. (6)

i=N1+1

Note that N; > 1, j = 1,2, implies that the random vector (N, N2) is truncated in the
upper orthant O(1,1).

5.1 Stochastic monotonicity of 0,

Let us first consider the MLE 6y in (5). It is quite easy to see that its survival function

has the form

Po{01 > x[(N1,Ns) > (1,1)} =

Z Po(N1 =nq, Ny =

ng) ~
Po (0 > 2| Ny =
Po (i > 1L, N, 5 1) 0> alNi=m)

(nl,n2)>(1 1)

k(n1)Pg, (N1 = nq)
E: Py (6 > z|Nj =
Po(Ny > LNy > 1) o (01 > 2Ny = o),

where k(ny) = Y " Pg, (N2 = ng|N1 =ny) =1~ e~ (n=n1)(T2=T1)/%2 does not depend on
01. Observe that the mixing distribution in the above mixture is univariate (depending

only on n1) and so we may use the TML with k& = 1.

It is easy to see that (M1) and (M2) follow exactly along the lines in Subsection 4.1.
This is the case for (M3) as well, with the only difference being that the truncation set
for Ny is {1,--- ,n — 1} instead of {1,--- ,r — 1}.

Thus follows the stochastic monotonicity of 6, with respect to 6.

Remark 2. As in the case of the step-stress model with Type-II censoring (see Remark
1), the distribution of 0, is very similar to the MLE of ; under standard Type-I censoring.
Yet again, the only difference is in the mixing distribution with Py, (N1 = n;)/Pg, (N1 > 1),
ny = 1,--- ,n, being replaced by k(n1)Pg, (N1 =n1)/Pg, (N1 2 1,Ny > 1),n1 =1,--+ ,n—
1.

5.2 Stochastic monotonicity of 0y

Now, let us consider the MLE 65 in (6). Its survival function takes the form



Po{0y > x|(N1,N2) > (1,1)}

Z Po(N1 = ny, No = na)

P é N, = No = )
PH(N1>1,N221) 62(2>£C| 1 ="N1,1V2 TLQ)

(n1=n2)>(171)

Note that in this case we can not reduce the dimension of the mixing distribution and so

we have to apply the TML with k = 2.
(M1) By conditioning on (N1, N2) = (n1,n2) = (1,1), the random vector (X, 11 —

Ty, Xnyt+nyn—11) has the same distribution as (Z1.,,, -+, Znyn, ), Where Zy, -+, Zy,, i
E(02)1(Z < Ty —Ty). Now, by using an argument similar to that of (M1) in Subsection
4.1, we arrive at the result.

(M2) For any fixed Ny > 1, 0y is clearly a decreasing function of N7. On the other hand,
for any fixed N; > 1, the situation is analogous to that of (M2) in Subsection 4.1.

(M3) This is the crucial part of the proof since proving that (Ny, Ny) is stochastically
decreasing in 69 is not simple at all. As already mentioned, the distribution of (N7, Na)

is trinomial but truncated in the upper orthant O(1,1). In this case, the following result

holds.

Result The conditional distribution of (N1, Na), given (N1 = 1, Ny > 1), is stochastically

decreasing in 0s.

Proof. The result is a special case of Theorem 1 which has been established in the Ap-
pendix. To see this, all we have to do is to replace p; and py by 1 — e 11/%1 and

1 — e (T2=T1)/%2  regpectively. =

Thus follows the stochastic monotonicity of ég with respect to 6.

6 Discussion and some final remarks

It is clear that the models introduced by Xiong (1998) and Balakrishnan et al. (2009) can be
naturally extended to the case of m+1 > 2 stress levels ly, [y, ..., . Then, in order for the
MLESs of all the corresponding parameters 61,...,60,, 11 to exist, at least one observation
at each stress level must be observed. If N; denotes the number of observed failures at
stress level [;_1, j = 1,...,m+1, then the distribution of éj can be expressed as a mixture
with the conditional distribution of (Ny,..., Ny41), given (N1 > 1,..., Npy1 = 1), as the

mixing distribution. Hence, the stochastic monotonicity of éj with respect to ¢; can be

10



established using TML. However, (M3) would require one to establish that the above
truncated (multinomial) distribution is stochastically decreasing in 6;. As can be seen
from the Appendix, proving this particular property is involved even in the case when
m = 1. Therefore, the proof of the corresponding result for the general case should
be quite complicated, although we feel that the truncated multinomial distribution does
satisfy the required property.

In concluding this paper, we would like to mention that Balakrishnan and Xie (2007a,b)
considered hybrid censoring schemes (cf. Childs et al., 2003) in the context of exponential
simple step-stess models. Specifically, let 0 < T} < 15 be two pre-fixed time points and
r €{1,---,n} be a fixed integer. The life test starts at the stress level [y which is changed
at time 77 to the stress level [y. In the first scheme studied by Balakrishnan and Xie
(2007b), the experiment continues until the random time 75 = min{X,.,,, 7o}, whereas in
the second scheme studied by Balakrishnan and Xie (2007a), the life test continues until the
random time 75" = max{X;.,,7>}. In both these situations, the authors considered the
case of exponential lifetimes and developed exact inference as well as asymptotic inference
and also bootstrap methods for the underlying parameters. It is also possible to introduce
some other forms of censoring such as generalized hybrid censoring (cf. Chandrasekar et
al., 2004) in the framework of step-stress models. In all these situations, it will naturally
be of great interest to establish the required monotonicity properties for the MLEs in
order to formally provide justification for the exact methods of inference developed in

these situations.
Appendix

Some properties of a family of trinomial distributions

Let (N1, N2) be a random vector with probability mass function (pmf)

g(ni,ng) = P(Ny =n1, Na = ng)

n _ n—n Ly —
= <nl)p?l(1—p1)” n1< o 1>p32(1—p2)” menz e 0 < nyyneg,ny + ne < n,

i.e., multinomial (trinomial) distribution with cell probabilities py, pa(1 — p1), 1 — p1 —
p2(1—p1) = (1—p1)(1—p2), respectively. It is more convenient for our purposes to express

the distribution in this form with ps denoting the probability of success of the conditional

11



binomial distribution of Na given Nj, since this way the parameters p; and ps become free
of each other. Let us denote the above distribution by M (n;p1,p2).

Fix p1, and let py < ph. If (N1, Na) ~ M(n;p1, p2) and (N7, N3) ~ M(n;p1,p5), then
(N1, N2) <g (N, Nj). To see this, notice that Ny 4 N7 and conditional on N7 = ny (for
any ny), No ~ B(n —ny,ps) and N5 ~ B(n — ny, ph) which means that No|(N7 = nq) <g
NJ|(N] = nq). So, there is an easy construction in the same probability space such that
(N1, N2) < (N, N3).

Suppose now, instead of the original multinomial distribution M(n;p1,p2), we have
to deal with its truncated version in an upper orthant, i.e., the distribution that has pmf
9(n1,n2)/ 30y np)eo(s,) 9(n1,m2) when (n1,ng) € O(s,t), for some 0 < s,t,s +t < n
Since the usual multivariate stochastic order (or even the upper orthant one) does not
maintain in general under truncation, we can not say at once that the truncated versions
of (N1,N3) and (Nj,N}) are still ordered. However, this fact is proved below in the

concluding Theorem 1 which requires the following lemmas and propositions.

Lemma 2. For any nq and s <t <n—ni; — 1, we have

P(N{ =n1,s < Ny < t) - P(N{ =n1+1,s <Nj<t)
P(N1:n1)S<N2<t) = P(N1:n1+1,5<]\]2 gt)

Proof. We will show that the ratio

P(Nl—n1+1s N2\)
P(N1 =n1,58 < Np < t)

is increasing in pa. We have
P(Nt =n1+1,5s < Ny < t)
P(Ny =n1,5s < No < 1)
I T i e
ke (PR (1= p1)m= () ph(1 = p)r ik
Shes (T PEQ —po)
ks (F)PE (L — p2)
PN L DUIC EEDY) ( where A\ = py/(1 _p2) 14+ A=1/(1—ps) )
Z]/;:s (T]Z))\k andm=n—ny >t+1
S (MDA D, (AR
ks ()N
Shes (DN ST (PR
Phes ()N

12



("IN Shman [ ) + TN+ (A
>y (J)AF
("N S (DA 4 (7 A
> hies (RN
D iees (AR 4 (M)A — (TN

Dhes ()N
(" A = ()

- 1+ (7)

Pk ()N

Differentiation of the above quantity with respect to A results in a fraction with numerator
{E+ D" )N = (T S, (N
(AT = ()N S k(A
= (t+D)(") Ehay (DA = s(75]) Ximy (D)X
= (") B RN 4 (7)) Ly B()AH

= (") Thaot+ 1= R (A 4 (1) Sl (b = ) ()X > 0

(%
)

Since A is strictly increasing in ps, the lemma follows. O

Lemma 3. For any nq and s <n —ny — 1, we have

P(N]{ =n1,s < Ny <n—nq) - PIN{=n1+1,s<N,<n—np—1)
P(Ni =n1,s<Nao<n—-ny) PNi=n+1,s<No<n—ng—1)

Proof. The proof is similar to that of Lemma 2. We need to show that the ratio

P(Nl—n1+1s Ng\n—nl—l)
P(Nl—nl,séNgén—nl)

is increasing in po. Following exactly the same steps as in the proof of Lemma 2, we arrive

at the ratio, instead of (7),

ZZLS (Tl:) A — (?:11))‘5 (Tsn 11))‘5 (72:11)

SN () F R 3 0N (0 CRRR S N (P

which is obviously increasing in A. Since A is strictly increasing in ps, the lemma follows.

O

Lemma 4. For any no and s <t <n —ng — 1, we have

P(s < Ny < t,N}) =na) - P(s < N{<t,Ny=ng+1)
P(Sgngt,Ngzng) = P(séngt,N2:n2+1)'

13



Proof. We will show that the ratio

is increasing in py. Recall that (T:Ll) (") = (:2) ("~"2). Then, we have

no ni

P(SgNl tNg—ng—l-l)
P(S N1 tNQ—nQ)

S (TRETNPE (L = p) R (S )P (L — py)n Rt
S s (PR = )R ()05 (1 — po)nkone
S s (TRTHPE(L = p1) Fpa(1 — po) TR
Sms ()P = p1) R = po)
D O e D Gy O ( where A = p1/[(1 = p1)(1 — ps)] )
S (M) Ak and p=p1/(1—p1)
(A= 1) Sy (M A
s (R)AF

Differentiation of the above quantity with respect to A results in a fraction with numerator

(withm=n—mng > t+1).

{ Xhms (T DN+ O = ) X (T RN T (AR
= A=) Y (MDA (D)
= { X ("N s ()N + X (MRS (D)
= s (AL (DAY
e i (" DN (oA = S (RN L (X ()

We will now show that the quantities in the brackets are both positive. The quantity in
the first bracket equals

{7 A s (N + (" A S, (AR = (A s (R kA
{20 (AN + T (T DRN(T)AT = S0 (M AR () sA)
{0 (T AN S ()N + 0 (T RN S ()
= (DN (Dea)
= ("IN, () A+ = RN (AT (M) (L k= s)AF
SRR O SR iy PUD DA () DY
+ ke o) (B = DAY ()N
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Zk s+1 (m I)Ak Zl/ s+1( )V)\V}

The first two terms of the last sum are clearly positive. Moreover, the quantity in the

brackets equals

Zk s+121/ s+1( )( ){1+(k_1)_y})\k+u
= Zk—erl Zu:sﬂ (72:1) (T) (k — V))‘HV (9)
= Yhmart Zomirn {000 () k=) + (02 () (v = k) pARe.

In the above sum, for any pair k& < v, A*t¥ is multiplied by

(o) () k=) + () (D = k) = (D) () (k= v)* > 0

and thus we conclude that the sum is positive. Hence, the quantity inside the first bracket

in (8) is positive. Next, the quantity inside the second bracket equals A\~! times
t —1 t t —1 t
Zk:s (mk ))‘k Zu:s (Tz)}) VAY — Zk:s (mk )k)‘k Zu:s (T) A
= s X (M) (D) (b = )Nt

which is the same quantity as that in (9) with s + 1 replaced by s. Since A™' > 0, the

quantity inside the second bracket in (8) is also positive, and this proves the lemma. [

Lemma 5. For any no and s <n —ny — 1, we have

P(s < N{ <n—na, N) =ng) - Ps< N <n—ny—1,N,=nyg+1)
P(Sgngn—nz,sznz) = P(Sgngn—nz—l,sznz-f—l).

Proof. The proof is similar to that of Lemma 4. We need to show that the ratio

P(S Nl\n—ng—lNgzng—i-l)
P(S<N1 n —ng, No —ng)

is increasing in po. This ratio is proportional to (A — p) Z;l ("o 1))\k /S (AR
where A, u and m are the same as in the proof of Lemma 4. The derivative of this term

with respect to A yields a ratio with numerator
(SR (7N 4 O ) TR (RN S ()
—(A =) X (M DAL (e
= {005 (M DAL, () + i (M RN L (D)
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ty - ng+t --———+

t1 ng -———-

Figure 1: (a) Proposition 1(a): The probability ratio on B is larger than or equal to the
probability ratio on A. (b) Proposition 2(b): The probability ratio on B = O(ny,na +t)
is larger than or equal to the probability ratio on AU B = O(ny,na).

= (NI, (D)
e R (M)A, (D)t = S (RN L, (D)
The quantity inside the first bracket equals
(S (T NN+ ST (T RN (AT = S (AT o)
LR D (o PLD DHENT () P - 9yl (g LU DAY ¢4 PY
= Vs (A (D))
= (AT (M D+ k= o)X+ A {0 R (s DU ST () Pt
+ Zzn:s—i—l (kil)(k - 1))\k Zl/ s+1 ( ) Zk s+1 (m 1))\k ZV s+1 ( )V)\V}
=()A RS (MED Ak =N AT ST (R0 () (R = AR
and is therefore positive. The quantity inside the second bracket A\~! times
b (T NSRS, (RN = 00 (RN L, ()N
=i (- S (e
+Zm 1(m 1))\k ( )k)\k' m 1(m l)k)\k ( ))\k

=S

= A" lesl (mk 1) (m - k))‘k + Zk:s ZT:SI (mk 1) (V)(V - k))‘kJrV

which is positive as well, and this completes the proof of the lemma. ]

Proposition 1. Assume that M(n;p1,p2) is truncated in an upper orthant O. We then
have the following:

16



(a) For any s1 < sg < s3 and t1 < to such that the rectangle {(i,7) : s1 < i< s3,t1 <jJ <

to} is a subset of O, we have

P(s1 < Ni < sg,t1 < Nj < tg) - P(soy +1 < Ny <sg,tp < Ny <o)
P(si <Ny < s9,t1 < Na<tg)  P(sa+1< Ny <s3,t1 < Ny<to)

(b) For any (ni,n2) € O and 1 < s < n —nj — na, we have

P{(N1,N3) € O(n1,na)} _ P{(NT, Ny) € O(na + 5,m2)}
P{(N1,N2) € O(n1,n2)} h P{(N1,N2) € O(n1 + S,TZQ)}'

Proof. (a) By Lemma 2, we have

P(Ni = u,ts S N3 <ta) _ P(N] =v,t1 < Nj < o)

P(N1 =u,t1 < Ny < to) PNy =v,t1 < Ny < to)
for all pairs u € {s1,--- ,s2} and v € {s9 + 1,--- ,s3}, and the result follows.
(b) By Lemma 3, we have

P(N{:u7n2<N£<n_u)<P(N{:U/I’L2<Né<n—v)
P(Ni =u,ng < Na<n—u) PNy =v,m3 < Na<n—v)

for all pairs u € {ny, - ,n1+s—1} and v € {n1 +s,--- ,n —ny}, and the result follows.
O

Proposition 2. Assume that M(n;p1,p2) is truncated in an upper orthant O. We then
have the following:

(a) For any s1 < sy and t1 < to < t3 such that the rectangle {(i,7) : s1 < i< s9,t1 < J <
ts} is a subset of O, we have

P(s1 < Ny < s9,t1 < Ny < to) - P(s1 <Ny <sgta +1 < Ny <t3)
P(s1 < Ny < s9,t1 < Na<tg)  P(s1 <Ny <sota+1< Ny < ty)

(b) For any (ni,n2) € O and 1 <t < n—ny —na, we have

P{(Ni, N3) € O(n1,na)} _ P{(N1, N3) € O(na,n2 + 1)}
P{(N1,N2) € O(ny,n2)} h P{(Ny,N2) € O(n1,n2 +7f)}.

Proof. The proof is similar to that of Proposition 1. O

Propositions 1 and 2 state that the probability ratio increases as we move either to the
“right” or “up”; see Figure 1.
The following proposition gives an intermediate result which is essential for proving

our final result in Theorem 1.
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Proposition 3. Assume that the multinomial distribution is truncated in the upper orthant
O(n1,n2). Then, (N1, Na) is stochastically smaller than (N7, N3) in the upper orthant

order.

Proof. By Propositions 1(b) and 2(b), for any upper orthant O(n; +s,ns+1t) with s,t > 0,

we have
P{(Ni,N3) € Olmi +s,n + 1)} P{(N], Ng) € Ona,na + 1)}
P{(N1,N2) € O(n1 +s,ma + )}~ P{(N1,Na) € O(n1,n2 +1)}
. PUN.NY) € O(ni,ma)}
- P{(Nl,Nz) S O(nl,ng)}
and thus,

P{(N{’Né) € O(nl +5,m2 +t)|(N{aNé) € O(nl’n2)}

> P{(Nl,Ng) € O(m + s,n9 + t)’(Nl,Ng) € O(nl,ng)}.
]

Any upper subset U of the lattice £(n) is a union of a finite number of upper orthants,
since U = Uy, ny)ev O(n1,n2). However, there exists a minimal representation of U. Let
U* = {(n1,n2) € U : P(i,5) € U with (4,5) < (n1,n2)} be the set of “minima” of U.

Sort the ordinates of the points in U* in increasing order, and denote this sequence by

ng < --+ < noy,. Denote also by nq, the abscissa corresponding to nop, k= 1,--- ,m.
Note that we necessarily have nyjy > --- > nyy,. Clearly, U = U0 (nij,noy), since
(n1,n2) & UL, 0(nig, noy) if and only if (ny,ng) < (nig,ng) for all k = 1,--- ,m, and

then (n1,n2) ¢ U by the definition of U*. Furthermore, U can not be represented as a

union of less than m upper orthants since then it would exclude some point of U*.

Theorem 1. For any upper subset U of L(n), we have P{(N7, N}) € U} > P{(Ny, N2) €
U}.

Proof. Let U have the minimal representation U = U™ ,O(nyg,na), m > 1. If m =1,
then U is an upper orthant itself for which the assertion has been already proved. So, let
m > 2. Moreover, assume that U is connected, i.e., nyp <n —ngpi1, k=1,--- ,m—1,
since otherwise it can be partitioned into (at least) two connected upper sets and then the

proof can be applied to each part separately.

18
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Figure 2: The upper set U = Uj_,O(n1x, nog) is above the solid line. The rectangles from
the bottom to the top are Ay, As, A3 (dashed lines) and By, Bs, By (dotted lines).

Let R{a,b,c,d} denote the rectangle with vertices at the points a,b,c,d. For k =
1,---,m —1, define

A = R{(n1im>n2k)s (Mim, N2 k1 — 1), (nag — L,ng g1 — 1), (nar — 1,n9k) }

and notice that O(nim,nom) = U;”:_llAk U U is the smallest upper orthant containing U.

Set further
Ul = O(nlmvan) and Uk = Uk*l\Akfh ] — 27 cee M.

Then, Uy, --- ,U,, is a decreasing sequence with U,,, = U and the minimal represenatation
of Uy is a union of k£ upper orthants.

For any measurable set A, let us denote P'(4) = P{(N{,Nj) € A} and P(4) =
P{(N1, N2) € A}. Since U; is an upper orthant, we have P'(U;) > P(U;). We will show
that P'(Ux) > P(Ug), k = 2,--- ,m, by dropping the Ay’s one after another. Notice here
that after completing the k-steps, we would have shown that P’ dominates P on any union
of k upper orthants.

Since Uy and A; are disjoint with Uy U Ay = Uy, we have P'(Uy) + P'(A1) = P(Us) +
P(A;). Clearly, if P'(A1) < P(A1), then P'(Us) > P(Us) holds. Assume now that P'(Ay) >
P(A;1). Then, Us can be partioned as

Uz = O(nim, n22) UO(n —nga + 1,n91) U Bo,
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where By = R{(n11,n21), (n11,n22 — 1), (n — nag, naa — 1), (n — nag, no1)}. By Proposition
1(a), P'(B2)/P(B2) = P'(A1)/P(A;1) and so P'(B2) > P(Bsz). Since Us has the above
partition, we conclude that P'(Us) > P(Us).

It will now be instructive to consider the case m = 3. Since Uy = Uz U Ay, we have
P/(Us) + P'(As) > P(Us) + P(As). Thus, if P/(As) < P(As), then P'(Us) > P(Us) holds.
So, assume that P’(As) > P(A3). There are now two possibilities: either ny; < n — ngg or

n11 > n — ne3. In the first case, partition Us as
Uz = {O(n11,n21) U O(n13,n23) } U Bs,

where Bs = R{(n11 — 1,n92), (n11 — 1,n23 — 1), (n12,n23 — 1), (n12,n22)}. The first part
of Us is the union of two upper orthants wherein P’ dominates P (by the previous step).
Moreover, P'(B3)/P(Bs) > P'(A2)/P(Az) and so P'(Bs) > P(Bs). Hence, we conclude
that P/(Us) > P(Us). In the second case, partition Us as

Us = {O(n11,n12) UO(n — ngg + 1,n92)} U O(n13,n23) U Ba,

where now B3 = R{(nlg, n22), (nlz, noz — 1), (n —nNng93,M23 — 1), (n —na3, ngz)}. Once again,
use Proposition 1(a) to get P'(Bs) > P(Bs). Since P’ dominates P also on the remaining
two parts of Us (i.e., the union of the two upper orthants and the single upper orthant),

we arrive at the result.

Consider now the general case. Given that P'(Uy) > P(Uy), we will show that
P/(UkJrl) > P(Uk+1). Since Uy, = Upy1 U A and Upy1 N A = &, we have P/(Uk+1) +
P'(Ag) = P(Uk11) + P(Ax). If P/(Ag) < P(Ag), then we are done. On the other hand, if

Z

P
P'(Ax) = P(Ayg), consider first the case ny y—1 < n — ngky1 and partition Ugyq as

Ug+1 = {[Uf;ll O(nij,m2;)] UO(n1 g1, n2 k1) } U Bryt,

where By 1 = R{(n1x—1—1,n), (N1 x—1—1,n2k11—1), (n1k, nokr1—1), (n1k, nox) . Note
that on the above union of the k upper orthants, P" dominates P. Moreover, P'(By1) >
P(B},) by Proposition 1(a) and the result then follows. When nj ;1 > n—ng j41, partition

Uiy as
U1 = { [U;?;ll O(n1j,m2;)] UO(n — ng i1 + 1,n21) } U O(ny g1, 2 k1) U Bra,

where now By = R{(nix, nox), (N1g, N2 pr1—1), (n—n2 py1, N2 g1 — 1), (n—n2 g1, nok) }-

The first part of U1 consists of the union of k—1 upper orthants wherein P’ dominates P.
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The second part is an upper orthant and finally by Proposition 1(a), P'(By11)/P(Bgk11) >
P’(Ak)/P(Ax) which implies that P'(Bj11) > P(Bg+1) as well. Hence, P'(Ug41) = P(Ug11).

By induction, it then follows that P'(U) > P(U), and the theorem is thus established.
O
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