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Abstract

In two recent papers by Balakrishnan, Kundu, Ng and Kannan (Journal of Qual-
ity Technology, 2007) and Balakrishnan, Xie and Kundu (Annals of the Institute of

Statistical Mathematics, 2009), the maximum likelihood estimators θ̂1 and θ̂2 of the
parameters θ1 and θ2 have been derived in the framework of exponential simple step-
stress models under Type-II and Type-I censoring, respectively. Here, we prove that
these estimators are stochastically monotone with respect to θ1 and θ2, respectively,
which has been conjectured in these papers and then utilized to develop exact con-
ditional inference for the parameters θ1 and θ2. For proving these results, we have
established a multivariate stochastic ordering of a particular family of trinomial dis-
tributions under truncation, which is also of independent interest.
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1 Introduction

An estimator θ̂ of a scalar parameter θ is said to be stochastically increasing in θ if its

survival function Pθ(θ̂ > x) is an increasing function of θ for any fixed x. This property

intuitively means that for larger values of θ we will tend to observe larger values for θ̂.

However, besides intuition, the stochastic increasingness of θ̂ with respect to θ also provides

a straightforward method of constructing confidence intervals for θ. The method, called

pivoting the cumulative distribution function (cdf) or, equivalently, the survival function

(cf. Casella and Berger, 2002, p. 432) proceeds as follows. Let θ̂obs denote the observed
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value of θ̂. Choose α1, α2 satisfying α1+α2 = α (for example, α1 = α2 = α/2) and solve the

equations Pθ(θ̂ > θ̂obs) = α1, Pθ(θ̂ > θ̂obs) = 1 − α2, for θ. The existence and uniqueness

of the solutions of these equations are guaranteed, of course, by the monotonicity of

Pθ(θ̂ > θ̂obs) with respect to θ. If we denote by θL(θ̂obs) < θU (θ̂obs) these solutions, then

[θL(θ̂obs), θU (θ̂obs)] is a 100(1 − α)% confidence interval for θ.

In the literature, a series of papers appeared discussing the construction of confidence

intervals for the parameters of interest relying on the assumed stochastic monotonicity of

the corresponding maximum likelihood estimators (MLEs), but did not prove this prop-

erty. Among these are Chen and Bhattacharyya (1988), Kundu and Basu (2000), Childs

et al. (2003), and Chandrasekar et al. (2004) who derived the MLEs of the underlying pa-

rameter as well as their exact conditional distributions under different scenarios involving

censored samples from an exponential distribution, numerically verified that these MLEs

are stochastically increasing with respect to the parameter, and then assumed it to develop

exact inference for the parameter. In all these cases, the survival function of the MLE has

the mixture form

Pθ(θ̂ > x) =
∑

d∈D

Pθ(D = d)Pθ(θ̂ > x|D = d),

where D is a finite set. Balakrishnan and Iliopoulos (2009) recently established a lemma

concerning the stochastic monotonicity of such mixtures, which proves the required mono-

tonicity of the MLEs in all the above mentioned cases.

Along the lines of developments mentioned above in the case of exponential distribution

under different forms of censored data, Balakrishnan et al. (2007, 2009) derived the MLEs

of the parameters θ1 and θ2 of an exponential simple step-stress model and their exact

conditional distributions under Type-II and Type-I censoring, respectively. Once again,

being unable to formally prove the stochastic monotonicity of these MLEs and verifying it

only through extensive numerical computations, these authors used the monotonicity to

develop exact conditional inference for the parameters θ1 and θ2. In this paper, we prove

formally the required stochastic monotonicity results, thus justifying the exact conditional

inference developed in Balakrishnan et al. (2007, 2009).

The rest of the paper is organized as follows. In Section 2, we give a brief description

of simple step-stess models and detail the results concerning exact inference for the ex-

ponential simple step-stress model under Type-I and Type-II censoring. In Section 3, we

provide a slight generalization of the lemma proved by Balakrishnan and Iliopoulos (2009)
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so that it becomes applicable in the case of mixtures wherein the mixing distribution is

multivariate. We then apply this generalized lemma to two exponential simple step-stress

models. Specifically, in Section 4, we consider the situation of Type-II censoring discussed

by Balakrishnan et al. (2007), while in Section 5 we consider the situation of Type-I cen-

soring discussed by Balakrishnan et al. (2009). We conclude the main part of the paper

in Section 6 with some final remarks. Finally, an appendix contains the primary work

in developing these results, namely, establishing the stochastic monotonicity of a partic-

ular family of trinomial distributions under truncation, which by itself is of independent

interest.

2 Step-stress accelerated life tests under censoring

Step-stress testing is a special case of an accelerated life testing experiment. Interested

readers may refer to the books by Nelson (1990), Meeker and Escobar (1998), and Bag-

donavicius and Nikulin (2002) for an elaborate treatment on accelerated life testing and

associated inferential issues. Under such an experiment, n identical units are placed on a

life test at an initial stress level l0. The stress level is successively changed to l1, · · · , lm

at some (possibly random) timepoints 0 < T1 < · · · < Tm and the successive failure times

are recorded. The so-called simple step-stress model, corresponding to the case m = 1 in

this set-up, has been studied extensively in the literature.

Sedyakin (1966) and Nelson (1990) have considered the cumulative exposure model

which can be described as follows. Denoting by Fj the distribution function of the lifetimes

at stress level lj−1, j = 1, 2, the distribution function of the lifetimes under the simple

step-stress model is given by

F (x) =

{

F1(x), 0 < x 6 T1,

F2(x − T1 + T ∗
1 ), x > T1,

where T ∗
1 is the solution to the equation F1(T1) = F2(T

∗
1 ). Note that this guarantees the

continuity of the distribution function at the point T1.

Xiong (1998) considered an exponential simple step-stress model with Type-II censor-

ing at the second level of stress. More specifically, let X1, · · · ,Xn be the lifetimes of the

n identical units under test, T1 > 0 a fixed time point, and r ∈ {2, · · · , n} a pre-fixed

integer. The test starts at the stress level l0 which is changed to l1 at time T1 and con-

tinues until the r-th failure is observed, at which time the test gets terminated. Xiong
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used a simple linear regression model for the logarithms of the exponential mean lifetimes

and developed inference for its parameters. However, upon noting that the MLEs of the

exponential mean lifetimes θ1 and θ2 exist only when the number of failures occurring at

the first level (with the corresponding lifetimes being at most T1) is at least 1 and at most

r−1, Balakrishnan et al. (2007) developed the exact conditional distributions of the MLEs

of the mean lifetimes and discussed exact as well as asymptotic inferential procedures and

bootstrap methods. Inference for this model has also been studied beyond the context of

exponential distribution; for example, Kateri and Balakrishnan (2008) recently discussed

the case of Weibull lifetimes.

Balakrishnan et al. (2009) considered a variation of the above model under time con-

straint, i.e., involving Type-I censoring rather than Type-II censoring at the second level

of stress. More specifically, they fixed another time point T2 > T1 at which the life test

gets terminated instead of waiting until the r-th failure to occur. By assuming exponential

lifetimes once again, they developed exact inferential procedures for the model parameters.

In both these works, however, the validity of the exact inferential procedures relies

on the stochastic monotonicity of the MLEs of the exponential means at the two stress

levels which was only verified numerically by these authors and not proved formally. In

the following sections, we establish these monotonicity results formally.

3 Preliminaries and the basic lemma

For any x = (x1, · · · , xk) and y = (y1, · · · , yk) ∈ Rk, we write y > x if yi > xi for all

i = 1, · · · , k. A set U ⊆ Rk is called an upper set if x ∈ U and y > x implies y ∈ U .

Two random vectors X = (X1, · · · ,Xk) and Y = (Y1, · · · , Yk) are ordered in the usual

multivariate stochastic order, denoted by X 6st Y, if for any measurable upper set U , we

have P(X ∈ U) 6 P(Y ∈ U). An upper orthant is a special case of upper set, containing all

x ∈ Rk such that x > a for some a ∈ Rk. We will use the notation O(a) ≡ O(a1, · · · , ak)

to denote the upper orthant with minimum point a = (a1, · · · , ak). A random vector X

is said to be stochastically smaller in the upper orthant ordering than another random

vector Y if P(X ∈ O) 6 P(Y ∈ O) for all upper orthants O. Clearly, the latter is weaker

than the usual multivariate stochastic ordering.

The usual multivariate stochastic order is characterized by the following: X 6st Y
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is equivalent to E{φ(X)} 6 E{φ(Y)} for any coordinatewise increasing function φ =

φ(x1, · · · , xk). Obviously, this is equivalent to E{φ(X)} > E{φ(Y)} for any coordinatewise

decreasing function φ. Note also that X 6st Y if and only if there exist random vectors X̂

and Ŷ defined in the same probability space such that X̂
d
= X, Ŷ

d
= Y and X̂ 6 Ŷ (a.s.).

Suppose now that the survival function of a particular estimator θ̂ of a scalar parameter

θ has the form

Pθ(θ̂ > x) =
∑

d∈D

Pθ(D = d)Pθ(θ̂ > x|D = d), (1)

where D ⊂ Rk. Balakrishnan and Iliopoulos (2009) proved a lemma, called Three Mono-

tonicities Lemma (TML), which provides sufficient conditions for the stochastic mono-

tonicity of θ̂ with respect to θ in the special case when k = 1. Here, we first extend this

result to any k > 1.

Lemma 1. [Three Monotonicities Lemma – General Case] Assume that the fol-

lowing hold true:

(M1) For all d = (d1, · · · , dk) ∈ D, the conditional distribution of θ̂, given D = d, is

stochastically increasing in θ, i.e., the function Pθ(θ̂ > x|D = d) is increasing in

θ for all x and d ∈ D;

(M2) For all x and θ > 0, the conditional distribution of θ̂, given D = d, is stochastically

decreasing in d, i.e., the function φ(d) = Pθ(θ̂ > x|D = d) is decreasing in every

di, i = 1, · · · , k;

(M3) D is stochastically decreasing in θ, i.e., Eθ{φ(D)} 6 Eθ′{φ(D)} when θ < θ′ for

any coordinatewise decreasing function φ.

Then, θ̂ is stochastically increasing in θ.

Proof. The proof follows exactly along the lines of TML established by Balakrishnan and

Iliopoulos (2009) and is therefore omitted here.

Due to this result, a proof of the stochastic monotonicity of θ̂ with respect to θ may

be completed in three steps, viz., by establishing the three conditions of Lemma 1. Since

the above lemma coincides with the original TML of Balakrishnan and Iliopoulos (2009)

when k = 1, we will refer to this lemma also as TML in the sequel.
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4 Simple step-stress model under Type-II censoring

We begin with the case of Type-II censoring as it is more easy to follow and simpler to

handle in this situation. By denoting X1:n < · · · < Xn:n for the ordered lifetimes and

defining N1 = #{X ′s 6 T1}, the experimenter will observe one among the following three

situations:

X1:n < · · · < Xr:n 6 T1,

X1:n < · · · < XN1:n 6 T1 < XN1+1:n < · · · < Xr:n,

T1 < X1:n < · · · < Xr:n.

By writing down the corresponding likelihood function, it is easy to see that the MLEs

of both θ1 and θ2 exist only in the second case, i.e., when 1 6 N1 6 r − 1. Balakrishnan

et al. (2007) showed that these MLEs are given by

θ̂1 =
1

N1

{ N1
∑

i=1

Xi:n + (n − N1)T1

}

(2)

and

θ̂2 =
1

r − N1

{ r
∑

i=N1+1

(Xi:n − T1) + (n − N1 − r)(Xr:n − T1)

}

. (3)

They then proceeded to discuss exact inference for the parameters θ1 and θ2 just by verify-

ing the stochastic monotonicity of these MLEs through extensive numerical computations.

We will now formally establish the stochastic monotonicity of θ̂1 and θ̂2 with respect to

θ1 and θ2, respectively, by using the TML presented in the preceding section.

4.1 Stochastic monotonicity of θ̂1

The survival function of θ̂1 can be expressed as

Pθ1
(θ̂1 > x|1 6 N1 6 r − 1) =

r−1
∑

n1=1

Pθ1
(N1 = n1)

Pθ1
(1 6 N1 6 r − 1)

Pθ1
(θ̂1 > x|N1 = n1). (4)

Since the survival function is of the form (1) with D = {1, . . . , r − 1}, we can apply the

TML with k = 1.

(M1) We have to show that the conditional distribution of θ̂1, given N1 = n1, is stochas-

tically increasing in θ1. To this end, recall that conditional on N1 = n1, (X1:n, · · · ,Xn1:n)
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have the same distribution as (Z1:n1
, · · · , Zn1:n1

), where Z1, · · · , Zn1

iid
∼ E(θ1)I(Z 6 T1),

that is, exponential with parameter θ1 but right truncated at T1; see, for example, Arnold

et al. (2008). Hence, conditional on N1 = n1,
∑N1

i=1 Xi:n
d
=

∑n1

i=1 Zi:n1
≡

∑n1

i=1 Zi. Since

the above right truncated exponential distribution is stochastically increasing in θ1 and

Z’s are independent, the required result follows immediately.

(M2) Next, we have to prove that the conditional distribution of θ̂1, given N1 = n1,

is stochastically decreasing in n1. In order to prove this assertion, we will use standard

coupling. For any n1 ∈ {1, · · · , r − 2}, let Z1, · · · , Zn1
, Zn1+1 be iid from E(θ1)I(Z 6 T1).

Then,

θ̂1|(N1 = n1) has the same distribution as
1

n1

{ n1
∑

i=1

Zi + (n − n1)T1

}

while

θ̂1|(N1 = n1 + 1) has the same distribution as
1

n1 + 1

{ n1+1
∑

i=1

Zi + (n − n1 − 1)T1

}

.

But,

1

n1

{ n1
∑

i=1

Zi + (n − n1)T1

}

−
1

n1 + 1

{ n1+1
∑

i=1

Zi + (n − n1 − 1)T1

}

=

∑n1

i=1 Zi + (n − n1)T1 + n1(T − Zn1+1)

n1(n1 + 1)
> 0,

which implies that Pθ1
(θ̂1 > x|N1 = n1) > Pθ1

(θ̂1 > x|N1 = n1 + 1) for all x, θ1 > 0.

(M3) Finally, we need to verify that N1 is stochastically decreasing in θ1. Note that (the

untruncated) N1 follows the binomial distribution B(n, 1 − e−T1/θ1). This distribution

has the monotone likelihood ratio property with respect to θ1. It is well known that for

univariate random variables, this property is not affected by truncation and consequently,

N1|(1 6 N1 6 r − 1) is stochastically decreasing in θ1.

Thus, the stochastic monotonicity of θ̂1 with respect to θ1 follows.

Remark 1. Note that, in almost every respect, θ̂1 is very similar to the MLE of θ1 under

standard Type-I censoring. Consider a random sample Y1, · · · , Yn from the exponential

distribution E(θ1) which is observed up to the point T1. Setting N1 = #{Y ′s 6 T1}, the

MLE of θ1 exists for N1 > 1 and is equal to θ̂1 (with Y ’s in the place of X’s). Its exact
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distribution has the form

Pθ1
(θ̂1 > x|N1 > 1) =

n
∑

n1=1

Pθ1
(N1 = n1)

Pθ1
(N1 > 1)

Pθ1
(θ̂1 > x|N1 = n1).

This is the same as the expression in (4), but with a slightly different mixing distribution.

4.2 Stochastic monotonicity of θ̂2

Balakrishnan et al. (2007) showed that the survival function of θ̂2 is given by

Pθ2
(θ̂2 > x|1 6 N1 6 r − 1) =

r−1
∑

n1=1

Pθ1
(N1 = n1)

Pθ1
(1 6 N1 6 r − 1)

Pθ2
(θ̂2 > x|N1 = n1),

with the conditional distribution of θ2, given N1 = n1, being gamma G
(

r − n1,
θ2

r−n1

)

.

The gamma distribution is stochastically increasing in its scale parameter, and so Pθ2
(θ̂2 >

x|N1 = n1) is increasing in θ2. By noting that the mixing distribution does not depend

on θ2, we conclude that the above survival function is increasing in θ2 for any fixed x, i.e.,

θ̂2 is stochastically increasing in θ2, as required.

5 Simple step-stress model under Type-I censoring

Balakrishnan et al. (2009) considered the following exponential simple step-stress model

under time constraint. Let 0 < T1 < T2 be two pre-specified time points. Then, n identical

units are placed on a life test at some stress level. At time T1, the stess level is changed

and the experiment terminates at time T2. Let X1, · · · ,Xn be the lifetimes of the units,

N1 be the number of failures at the first stress level, and N2 be the number of failures at

the second stress level. Clearly, there is a chance of observing N1 = 0 or/and N2 = 0.

However, we will restrict our discussion to the most interesting case when Nj > 1, j = 1, 2,

in which the experimenter observes data of the form

X1:n < · · · < XN1:n 6 T1 < XN1+1:n < · · · < XN1+N2:n 6 T2.

In fact, this is the only case in which the MLEs of both θ1 and θ2 exist, and are given by

θ̂1 =
1

N1

{ N1
∑

i=1

Xi:n + (n − N1)T1

}

(5)

8



and

θ̂2 =
1

N2

{ N1+N2
∑

i=N1+1

(Xi:n − T1) + (n − N1 − N2)(T2 − T1)

}

. (6)

Note that Nj > 1, j = 1, 2, implies that the random vector (N1, N2) is truncated in the

upper orthant O(1, 1).

5.1 Stochastic monotonicity of θ̂1

Let us first consider the MLE θ̂1 in (5). It is quite easy to see that its survival function

has the form

Pθ{θ̂1 > x|(N1, N2) > (1, 1)} =

=
∑

(n1,n2)>(1,1)

Pθ(N1 = n1, N2 = n2)

Pθ(N1 > 1, N2 > 1)
Pθ(θ̂1 > x|N1 = n1)

=

n−1
∑

n1=1

k(n1)Pθ1
(N1 = n1)

Pθ(N1 > 1, N2 > 1)
Pθ1

(θ̂1 > x|N1 = n1),

where k(n1) =
∑n−n1

n2=1 Pθ2
(N2 = n2|N1 = n1) = 1− e−(n−n1)(T2−T1)/θ2 does not depend on

θ1. Observe that the mixing distribution in the above mixture is univariate (depending

only on n1) and so we may use the TML with k = 1.

It is easy to see that (M1) and (M2) follow exactly along the lines in Subsection 4.1.

This is the case for (M3) as well, with the only difference being that the truncation set

for N1 is {1, · · · , n − 1} instead of {1, · · · , r − 1}.

Thus follows the stochastic monotonicity of θ̂1 with respect to θ1.

Remark 2. As in the case of the step-stress model with Type-II censoring (see Remark

1), the distribution of θ̂1 is very similar to the MLE of θ1 under standard Type-I censoring.

Yet again, the only difference is in the mixing distribution with Pθ1
(N1 = n1)/Pθ1

(N1 > 1),

n1 = 1, · · · , n, being replaced by k(n1)Pθ1
(N1 = n1)/Pθ1

(N1 > 1, N2 > 1), n1 = 1, · · · , n−

1.

5.2 Stochastic monotonicity of θ̂2

Now, let us consider the MLE θ̂2 in (6). Its survival function takes the form
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Pθ{θ̂2 > x|(N1, N2) > (1, 1)}

=
∑

(n1,n2)>(1,1)

Pθ(N1 = n1, N2 = n2)

Pθ(N1 > 1, N2 > 1)
Pθ2

(θ̂2 > x|N1 = n1, N2 = n2).

Note that in this case we can not reduce the dimension of the mixing distribution and so

we have to apply the TML with k = 2.

(M1) By conditioning on (N1, N2) = (n1, n2) > (1, 1), the random vector (Xn1+1:n −

T1, · · · ,Xn1+n2:n−T1) has the same distribution as (Z1:n2
, · · · , Zn2:n2

), where Z1, · · · , Zn2

iid
∼

E(θ2)I(Z 6 T2 − T1). Now, by using an argument similar to that of (M1) in Subsection

4.1, we arrive at the result.

(M2) For any fixed N2 > 1, θ̂2 is clearly a decreasing function of N1. On the other hand,

for any fixed N1 > 1, the situation is analogous to that of (M2) in Subsection 4.1.

(M3) This is the crucial part of the proof since proving that (N1, N2) is stochastically

decreasing in θ2 is not simple at all. As already mentioned, the distribution of (N1, N2)

is trinomial but truncated in the upper orthant O(1, 1). In this case, the following result

holds.

Result The conditional distribution of (N1, N2), given (N1 > 1, N2 > 1), is stochastically

decreasing in θ2.

Proof. The result is a special case of Theorem 1 which has been established in the Ap-

pendix. To see this, all we have to do is to replace p1 and p2 by 1 − e−T1/θ1 and

1 − e−(T2−T1)/θ2 , respectively.

Thus follows the stochastic monotonicity of θ̂2 with respect to θ2.

6 Discussion and some final remarks

It is clear that the models introduced by Xiong (1998) and Balakrishnan et al. (2009) can be

naturally extended to the case of m+1 > 2 stress levels l0, l1, . . . , lm. Then, in order for the

MLEs of all the corresponding parameters θ1, . . . , θm+1 to exist, at least one observation

at each stress level must be observed. If Nj denotes the number of observed failures at

stress level lj−1, j = 1, . . . ,m+1, then the distribution of θ̂j can be expressed as a mixture

with the conditional distribution of (N1, . . . , Nm+1), given (N1 > 1, . . . , Nm+1 > 1), as the

mixing distribution. Hence, the stochastic monotonicity of θ̂j with respect to θj can be
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established using TML. However, (M3) would require one to establish that the above

truncated (multinomial) distribution is stochastically decreasing in θj. As can be seen

from the Appendix, proving this particular property is involved even in the case when

m = 1. Therefore, the proof of the corresponding result for the general case should

be quite complicated, although we feel that the truncated multinomial distribution does

satisfy the required property.

In concluding this paper, we would like to mention that Balakrishnan and Xie (2007a,b)

considered hybrid censoring schemes (cf. Childs et al., 2003) in the context of exponential

simple step-stess models. Specifically, let 0 < T1 < T2 be two pre-fixed time points and

r ∈ {1, · · · , n} be a fixed integer. The life test starts at the stress level l0 which is changed

at time T1 to the stress level l1. In the first scheme studied by Balakrishnan and Xie

(2007b), the experiment continues until the random time T ∗
2 = min{Xr:n, T2}, whereas in

the second scheme studied by Balakrishnan and Xie (2007a), the life test continues until the

random time T ∗∗
2 = max{Xr:n, T2}. In both these situations, the authors considered the

case of exponential lifetimes and developed exact inference as well as asymptotic inference

and also bootstrap methods for the underlying parameters. It is also possible to introduce

some other forms of censoring such as generalized hybrid censoring (cf. Chandrasekar et

al., 2004) in the framework of step-stress models. In all these situations, it will naturally

be of great interest to establish the required monotonicity properties for the MLEs in

order to formally provide justification for the exact methods of inference developed in

these situations.

Appendix

Some properties of a family of trinomial distributions

Let (N1, N2) be a random vector with probability mass function (pmf)

g(n1, n2) = P(N1 = n1, N2 = n2)

=

(

n

n1

)

pn1

1 (1 − p1)
n−n1

(

n − n1

n2

)

pn2

2 (1 − p2)
n−n1−n2, 0 6 n1, n2, n1 + n2 6 n,

i.e., multinomial (trinomial) distribution with cell probabilities p1, p2(1 − p1), 1 − p1 −

p2(1−p1) = (1−p1)(1−p2), respectively. It is more convenient for our purposes to express

the distribution in this form with p2 denoting the probability of success of the conditional
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binomial distribution of N2 given N1, since this way the parameters p1 and p2 become free

of each other. Let us denote the above distribution by M(n; p1, p2).

Fix p1, and let p2 < p′2. If (N1, N2) ∼ M(n; p1, p2) and (N ′
1, N

′
2) ∼ M(n; p1, p

′
2), then

(N1, N2) 6st (N ′
1, N

′
2). To see this, notice that N1

d
= N ′

1 and conditional on N1 = n1 (for

any n1), N2 ∼ B(n − n1, p2) and N ′
2 ∼ B(n − n1, p

′
2) which means that N2|(N1 = n1) 6st

N ′
2|(N

′
1 = n1). So, there is an easy construction in the same probability space such that

(N̂1, N̂2) 6 (N̂ ′
1, N̂

′
2).

Suppose now, instead of the original multinomial distribution M(n; p1, p2), we have

to deal with its truncated version in an upper orthant, i.e., the distribution that has pmf

g(n1, n2)/
∑

(n1,n2)∈O(s,t) g(n1, n2) when (n1, n2) ∈ O(s, t), for some 0 6 s, t, s + t 6 n.

Since the usual multivariate stochastic order (or even the upper orthant one) does not

maintain in general under truncation, we can not say at once that the truncated versions

of (N1, N2) and (N ′
1, N

′
2) are still ordered. However, this fact is proved below in the

concluding Theorem 1 which requires the following lemmas and propositions.

Lemma 2. For any n1 and s 6 t 6 n − n1 − 1, we have

P(N ′
1 = n1, s 6 N ′

2 6 t)

P(N1 = n1, s 6 N2 6 t)
6

P(N ′
1 = n1 + 1, s 6 N ′

2 6 t)

P(N1 = n1 + 1, s 6 N2 6 t)
.

Proof. We will show that the ratio

P(N1 = n1 + 1, s 6 N2 6 t)

P(N1 = n1, s 6 N2 6 t)

is increasing in p2. We have

P(N1 = n1 + 1, s 6 N2 6 t)

P(N1 = n1, s 6 N2 6 t)

=

∑t
k=s

( n
n1+1

)

pn1+1
1 (1 − p1)

n−n1−1
(n−n1−1

k

)

pk
2(1 − p2)

n−n1−1−k

∑t
k=s

( n
n1

)

pn1

1 (1 − p1)n−n1

(n−n1

k

)

pk
2(1 − p2)n−n1−k

∝

∑t
k=s

(n−n1−1
k

)

pk
2(1 − p2)

−1−k

∑t
k=s

(n−n1

k

)

pk
2(1 − p2)−k

=

∑t
k=s

(m−1
k

)

λk(1 + λ)
∑t

k=s

(m
k

)

λk

(

where λ = p2/(1 − p2), 1 + λ = 1/(1 − p2)
and m = n − n1 > t + 1

)

=

∑t
k=s

(m−1
k

)

λk +
∑t

k=s

(m−1
k

)

λk+1

∑t
k=s

(m
k

)

λk

=

∑t
k=s

(

m−1
k

)

λk +
∑t+1

k=s+1

(

m−1
k−1

)

λk

∑t
k=s

(m
k

)

λk

12



=

(

m−1
s

)

λs +
∑t

k=s+1

[(

m−1
k

)

+
(

m−1
k−1

)]

λk +
(

m−1
t

)

λt+1

∑t
k=s

(m
k

)

λk

=

(m−1
s

)

λs +
∑t

k=s+1

(m
k

)

λk +
(m−1

t

)

λt+1

∑t
k=s

(m
k

)

λk

=

∑t
k=s

(

m
k

)

λk +
(

m−1
t

)

λt+1 −
(

m−1
s−1

)

λs

∑t
k=s

(m
k

)

λk

= 1 +

(m−1
t

)

λt+1 −
(m−1

s−1

)

λs

∑t
k=s

(

m
k

)

λk
. (7)

Differentiation of the above quantity with respect to λ results in a fraction with numerator

{

(t + 1)
(m−1

t

)

λt − s
(m−1

s−1

)

λs−1
}

∑t
k=s

(m
k

)

λk

−
{(m−1

t

)

λt+1 −
(m−1

s−1

)

λs
}

∑t
k=s k

(m
k

)

λk−1

= (t + 1)
(m−1

t

)
∑t

k=s

(m
k

)

λt+k − s
(m−1

s−1

)
∑t

k=s

(m
k

)

λs+k−1

−
(m−1

t

)
∑t

k=s k
(m

k

)

λt+k +
(m−1

s−1

)
∑t

k=s k
(m

k

)

λs+k−1

=
(

m−1
t

)
∑t

k=s(t + 1 − k)
(

m
k

)

λt+k +
(

m−1
s−1

)
∑t

k=s(k − s)
(

m
k

)

λs+k−1 > 0.

Since λ is strictly increasing in p2, the lemma follows.

Lemma 3. For any n1 and s 6 n − n1 − 1, we have

P(N ′
1 = n1, s 6 N ′

2 6 n − n1)

P(N1 = n1, s 6 N2 6 n − n1)
6

P(N ′
1 = n1 + 1, s 6 N ′

2 6 n − n1 − 1)

P(N1 = n1 + 1, s 6 N2 6 n − n1 − 1)
.

Proof. The proof is similar to that of Lemma 2. We need to show that the ratio

P(N1 = n1 + 1, s 6 N2 6 n − n1 − 1)

P(N1 = n1, s 6 N2 6 n − n1)

is increasing in p2. Following exactly the same steps as in the proof of Lemma 2, we arrive

at the ratio, instead of (7),

∑m
k=s

(m
k

)

λk −
(m−1

s−1

)

λs

∑m
k=s

(m
k

)

λk
= 1 −

(m−1
s−1

)

λs

∑m
k=s

(m
k

)

λk
= 1 −

(m−1
s−1

)

∑m
k=s

(m
k

)

λk−s

which is obviously increasing in λ. Since λ is strictly increasing in p2, the lemma follows.

Lemma 4. For any n2 and s 6 t 6 n − n2 − 1, we have

P(s 6 N ′
1 6 t,N ′

2 = n2)

P(s 6 N1 6 t,N2 = n2)
6

P(s 6 N ′
1 6 t,N ′

2 = n2 + 1)

P(s 6 N1 6 t,N2 = n2 + 1)
.

13



Proof. We will show that the ratio

P(s 6 N1 6 t,N2 = n2 + 1)

P(s 6 N1 6 t,N2 = n2)

is increasing in p2. Recall that
(

n
n1

)(

n−n1

n2

)

=
(

n
n2

)(

n−n2

n1

)

. Then, we have

P (s 6 N1 6 t,N2 = n2 + 1)

P (s 6 N1 6 t,N2 = n2)

=

∑t
k=s

(n−n2−1
k

)

pk
1(1 − p1)

n−k
( n
n2+1

)

pn2+1
2 (1 − p2)

n−k−n2−1

∑t
k=s

(n−n2

k

)

pk
1(1 − p1)n−k

( n
n2

)

pn2

2 (1 − p2)n−k−n2

∝

∑t
k=s

(n−n2−1
k

)

pk
1(1 − p1)

−kp2(1 − p2)
−k−1

∑t
k=s

(n−n2

k

)

pk
1(1 − p1)−k(1 − p2)−k

=

∑t
k=s

(n−n2−1
k

)

λk(λ − µ)/µ
∑t

k=s

(n−n2

k

)

λk

(

where λ = p1/[(1 − p1)(1 − p2)]
and µ = p1/(1 − p1)

)

∝
(λ − µ)

∑t
k=s

(m−1
k

)

λk

∑t
k=s

(m
k

)

λk
(with m = n − n2 > t + 1).

Differentiation of the above quantity with respect to λ results in a fraction with numerator

{
∑t

k=s

(m−1
k

)

λk + (λ − µ)
∑t

k=s

(m−1
k

)

kλk−1
}

∑t
k=s

(m
k

)

λk

− (λ − µ)
∑t

k=s

(m−1
k

)

λk
∑t

ν=s

(m
ν

)

νλν−1

=
{

∑t
k=s

(m−1
k

)

λk
∑t

ν=s

(m
ν

)

λν +
∑t

k=s

(m−1
k

)

kλk
∑t

ν=s

(m
ν

)

λν

−
∑t

k=s

(m−1
k

)

λk
∑t

ν=s

(m
ν

)

νλν
}

+ µ
{

∑t
k=s

(m−1
k

)

λk
∑t

ν=s

(m
ν

)

νλν−1 −
∑t

k=s

(m−1
k

)

kλk−1
∑t

ν=s

(m
ν

)

λν
}

. (8)

We will now show that the quantities in the brackets are both positive. The quantity in

the first bracket equals

{(m−1
t

)

λt
∑t

k=s

(m
k

)

λk +
(m−1

t

)

tλt
∑t

k=s

(m
k

)

λk −
(m−1

t

)

λt
∑t

k=s

(m
k

)

kλk
}

+
{

∑t−1
k=s

(m−1
k

)

λk
(m

s

)

λs +
∑t−1

k=s

(m−1
k

)

kλk
(m

s

)

λs −
∑t−1

k=s

(m−1
k

)

λk
(m

s

)

sλs
}

+
{

∑t−1
k=s

(m−1
k

)

λk
∑t

ν=s+1

(m
ν

)

λν +
∑t−1

k=s

(m−1
k

)

kλk
∑t

ν=s+1

(m
ν

)

λν

−
∑t−1

k=s

(m−1
k

)

λk
∑t

ν=s+1

(m
ν

)

νλν
}

=
(m−1

t

)

λt
∑t

k=s

(m
k

)

(1 + t − k)λk +
(m

s

)

λs
∑t−1

k=s

(m−1
k

)

(1 + k − s)λk

+ λ−1
{

∑t
k=s+1

(m−1
k−1

)

λk
∑t

ν=s+1

(m
ν

)

λν

+
∑t

k=s+1

(m−1
k−1

)

(k − 1)λk
∑t

ν=s+1

(m
ν

)

λν
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−
∑t

k=s+1

(m−1
k−1

)

λk
∑t

ν=s+1

(m
ν

)

νλν
}

.

The first two terms of the last sum are clearly positive. Moreover, the quantity in the

brackets equals

∑t
k=s+1

∑t
ν=s+1

(m−1
k−1

)(m
ν

)

{1 + (k − 1) − ν}λk+ν

=
∑t

k=s+1

∑t
ν=s+1

(

m−1
k−1

)(

m
ν

)

(k − ν)λk+ν (9)

=
∑t−1

k=s+1

∑t
ν=k+1

{(m−1
k−1

)(m
ν

)

(k − ν) +
(m−1

ν−1

)(m
k

)

(ν − k)
}

λk+ν.

In the above sum, for any pair k < ν, λk+ν is multiplied by

(m−1
k−1

)(m
ν

)

(k − ν) +
(m−1

ν−1

)(m
k

)

(ν − k) = 1
m

(m
k

)(m
ν

)

(k − ν)2 > 0

and thus we conclude that the sum is positive. Hence, the quantity inside the first bracket

in (8) is positive. Next, the quantity inside the second bracket equals λ−1 times

∑t
k=s

(m−1
k

)

λk
∑t

ν=s

(m
ν

)

νλν −
∑t

k=s

(m−1
k

)

kλk
∑t

ν=s

(m
ν

)

λν

=
∑t

k=s

∑t
ν=s

(

m−1
k

)(

m
ν

)

(k − ν)λk+ν

which is the same quantity as that in (9) with s + 1 replaced by s. Since λ−1 > 0, the

quantity inside the second bracket in (8) is also positive, and this proves the lemma.

Lemma 5. For any n2 and s 6 n − n2 − 1, we have

P(s 6 N ′
1 6 n − n2, N

′
2 = n2)

P(s 6 N1 6 n − n2, N2 = n2)
6

P(s 6 N ′
1 6 n − n2 − 1, N ′

2 = n2 + 1)

P(s 6 N1 6 n − n2 − 1, N2 = n2 + 1)
.

Proof. The proof is similar to that of Lemma 4. We need to show that the ratio

P(s 6 N1 6 n − n2 − 1, N2 = n2 + 1)

P(s 6 N1 6 n − n2, N2 = n2)

is increasing in p2. This ratio is proportional to (λ − µ)
∑m−1

k=s

(

m−1
k

)

λk/
∑m

k=s

(

m
k

)

λk,

where λ, µ and m are the same as in the proof of Lemma 4. The derivative of this term

with respect to λ yields a ratio with numerator

{
∑m−1

k=s

(

m−1
k

)

λk + (λ − µ)
∑m−1

k=s

(

m−1
k

)

kλk−1
}

∑m
k=s

(

m
k

)

λk

−(λ − µ)
∑m−1

k=s

(

m−1
k

)

λk
∑m

ν=s

(

m
ν

)

νλν−1

=
{

∑m−1
k=s

(m−1
k

)

λk
∑m

ν=s

(m
ν

)

λν +
∑m−1

k=s

(m−1
k

)

kλk
∑m

ν=s

(m
ν

)

λν
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s1 s2 s3

t1

t2

A B
n2

n1

n2 + t

A

B

(a) (b)

Figure 1: (a) Proposition 1(a): The probability ratio on B is larger than or equal to the
probability ratio on A. (b) Proposition 2(b): The probability ratio on B = O(n1, n2 + t)
is larger than or equal to the probability ratio on A ∪ B = O(n1, n2).

−
∑m−1

k=s

(

m−1
k

)

λk
∑m

ν=s

(

m
ν

)

νλν
}

+µ
{

∑m−1
k=s

(

m−1
k

)

λk
∑m

ν=s

(

m
ν

)

νλν−1 −
∑m−1

k=s

(

m−1
k

)

kλk−1
∑m

ν=s

(

m
ν

)

λν
}

.

The quantity inside the first bracket equals

{
∑m−1

k=s

(m−1
k

)

λk
(m

s

)

λs +
∑m−1

k=s

(m−1
k

)

kλk
(m

s

)

λs −
∑m−1

k=s

(m−1
k

)

λk
(m

s

)

sλs
}

+
{

∑m−1
k=s

(

m−1
k

)

λk
∑m

ν=s+1

(

m
ν

)

λν +
∑t−1

k=s

(

m−1
k

)

kλk
∑m

ν=s+1

(

m
ν

)

λν

−
∑t−1

k=s

(m−1
k

)

λk
∑m

ν=s+1

(m
ν

)

νλν
}

=
(m

s

)

λs
∑m−1

k=s

(m−1
k

)

(1 + k − s)λk + λ−1
{

∑m
k=s+1

(m−1
k−1

)

λk
∑m

ν=s+1

(m
ν

)

λν

+
∑m

k=s+1

(

m−1
k−1

)

(k − 1)λk
∑m

ν=s+1

(

m
ν

)

λν −
∑m

k=s+1

(

m−1
k−1

)

λk
∑m

ν=s+1

(

m
ν

)

νλν
}

=
(

m
s

)

λs
∑m−1

k=s

(

m−1
k

)

(1 + k − s)λk + λ−1
∑m

k=s+1

∑m
ν=s+1

(

m−1
k−1

)(

m
ν

)

(k − ν)λk+ν

and is therefore positive. The quantity inside the second bracket λ−1 times

∑m−1
k=s

(m−1
k

)

λk
∑m

k=s

(m
k

)

kλk −
∑m−1

k=s

(m−1
k

)

kλk
∑m

k=s

(m
k

)

λk

=
∑m−1

k=s

(m−1
k

)

λkmλm −
∑m−1

k=s

(m−1
k

)

kλkλm

+
∑m−1

k=s

(m−1
k

)

λk
∑m−1

k=s

(m
k

)

kλk −
∑m−1

k=s

(m−1
k

)

kλk
∑m−1

k=s

(m
k

)

λk

= λm
∑m−1

k=s

(m−1
k

)

(m − k)λk +
∑m−1

k=s

∑m−1
ν=s

(m−1
k

)(m
ν

)

(ν − k)λk+ν

which is positive as well, and this completes the proof of the lemma.

Proposition 1. Assume that M(n; p1, p2) is truncated in an upper orthant O. We then

have the following:
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(a) For any s1 6 s2 < s3 and t1 6 t2 such that the rectangle {(i, j) : s1 6 i 6 s3, t1 6 j 6

t2} is a subset of O, we have

P(s1 6 N ′
1 6 s2, t1 6 N ′

2 6 t2)

P(s1 6 N1 6 s2, t1 6 N2 6 t2)
6

P(s2 + 1 6 N ′
1 6 s3, t1 6 N ′

2 6 t2)

P(s2 + 1 6 N1 6 s3, t1 6 N2 6 t2)
;

(b) For any (n1, n2) ∈ O and 1 6 s 6 n − n1 − n2, we have

P{(N ′
1, N

′
2) ∈ O(n1, n2)}

P{(N1, N2) ∈ O(n1, n2)}
6

P{(N ′
1, N

′
2) ∈ O(n1 + s, n2)}

P{(N1, N2) ∈ O(n1 + s, n2)}
.

Proof. (a) By Lemma 2, we have

P(N ′
1 = u, t1 6 N ′

2 6 t2)

P(N1 = u, t1 6 N2 6 t2)
6

P(N ′
1 = v, t1 6 N ′

2 6 t2)

P(N1 = v, t1 6 N2 6 t2)

for all pairs u ∈ {s1, · · · , s2} and v ∈ {s2 + 1, · · · , s3}, and the result follows.

(b) By Lemma 3, we have

P(N ′
1 = u, n2 6 N ′

2 6 n − u)

P(N1 = u, n2 6 N2 6 n − u)
6

P(N ′
1 = v, n2 6 N ′

2 6 n − v)

P(N1 = v, n2 6 N2 6 n − v)

for all pairs u ∈ {n1, · · · , n1 + s− 1} and v ∈ {n1 + s, · · · , n− n2}, and the result follows.

Proposition 2. Assume that M(n; p1, p2) is truncated in an upper orthant O. We then

have the following:

(a) For any s1 6 s2 and t1 6 t2 < t3 such that the rectangle {(i, j) : s1 6 i 6 s2, t1 6 j 6

t3} is a subset of O, we have

P(s1 6 N ′
1 6 s2, t1 6 N ′

2 6 t2)

P(s1 6 N1 6 s2, t1 6 N2 6 t2)
6

P(s1 6 N ′
1 6 s2, t2 + 1 6 N ′

2 6 t3)

P(s1 6 N1 6 s2, t2 + 1 6 N2 6 t3)
;

(b) For any (n1, n2) ∈ O and 1 6 t 6 n − n1 − n2, we have

P{(N ′
1, N

′
2) ∈ O(n1, n2)}

P{(N1, N2) ∈ O(n1, n2)}
6

P{(N ′
1, N

′
2) ∈ O(n1, n2 + t)}

P{(N1, N2) ∈ O(n1, n2 + t)}
.

Proof. The proof is similar to that of Proposition 1.

Propositions 1 and 2 state that the probability ratio increases as we move either to the

“right” or “up”; see Figure 1.

The following proposition gives an intermediate result which is essential for proving

our final result in Theorem 1.
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Proposition 3. Assume that the multinomial distribution is truncated in the upper orthant

O(n1, n2). Then, (N1, N2) is stochastically smaller than (N ′
1, N

′
2) in the upper orthant

order.

Proof. By Propositions 1(b) and 2(b), for any upper orthant O(n1+s, n2+t) with s, t > 0,

we have

P{(N ′
1, N

′
2) ∈ O(n1 + s, n2 + t)}

P{(N1, N2) ∈ O(n1 + s, n2 + t)}
>

P{(N ′
1, N

′
2) ∈ O(n1, n2 + t)}

P{(N1, N2) ∈ O(n1, n2 + t)}

>
P{(N ′

1, N
′
2) ∈ O(n1, n2)}

P{(N1, N2) ∈ O(n1, n2)}

and thus,

P{(N ′
1, N

′
2) ∈ O(n1 + s, n2 + t)|(N ′

1, N
′
2) ∈ O(n1, n2)}

> P{(N1, N2) ∈ O(n1 + s, n2 + t)|(N1, N2) ∈ O(n1, n2)}.

Any upper subset U of the lattice L(n) is a union of a finite number of upper orthants,

since U = ∪(n1,n2)∈U O(n1, n2). However, there exists a minimal representation of U . Let

U∗ = {(n1, n2) ∈ U : ∄(i, j) ∈ U with (i, j) < (n1, n2)} be the set of “minima” of U .

Sort the ordinates of the points in U∗ in increasing order, and denote this sequence by

n21 < · · · < n2m. Denote also by n1k the abscissa corresponding to n2k, k = 1, · · · ,m.

Note that we necessarily have n11 > · · · > n1m. Clearly, U = ∪m
k=1O(n1k, n2k), since

(n1, n2) /∈ ∪m
k=1O(n1k, n2k) if and only if (n1, n2) < (n1k, n2k) for all k = 1, · · · ,m, and

then (n1, n2) /∈ U by the definition of U∗. Furthermore, U can not be represented as a

union of less than m upper orthants since then it would exclude some point of U∗.

Theorem 1. For any upper subset U of L(n), we have P{(N ′
1, N

′
2) ∈ U} > P{(N1, N2) ∈

U}.

Proof. Let U have the minimal representation U = ∪m
k=1O(n1k, n2k), m > 1. If m = 1,

then U is an upper orthant itself for which the assertion has been already proved. So, let

m > 2. Moreover, assume that U is connected, i.e., n1k 6 n − n2,k+1, k = 1, · · · ,m − 1,

since otherwise it can be partitioned into (at least) two connected upper sets and then the

proof can be applied to each part separately.
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Figure 2: The upper set U = ∪4
k=1O(n1k, n2k) is above the solid line. The rectangles from

the bottom to the top are A1, A2, A3 (dashed lines) and B2, B3, B4 (dotted lines).

Let R{a, b, c, d} denote the rectangle with vertices at the points a, b, c, d. For k =

1, · · · ,m − 1, define

Ak = R{(n1m, n2k), (n1m, n2,k+1 − 1), (n1k − 1, n2,k+1 − 1), (n1k − 1, n2k)}

and notice that O(n1m, n2m) = ∪m−1
k=1 Ak ∪ U is the smallest upper orthant containing U .

Set further

U1 = O(n1m, n2m) and Uk = Uk−1\Ak−1, j = 2, · · · ,m.

Then, U1, · · · , Um is a decreasing sequence with Um = U and the minimal represenatation

of Uk is a union of k upper orthants.

For any measurable set A, let us denote P
′(A) ≡ P{(N ′

1, N
′
2) ∈ A} and P(A) ≡

P{(N1, N2) ∈ A}. Since U1 is an upper orthant, we have P
′(U1) > P(U1). We will show

that P
′(Uk) > P(Uk), k = 2, · · · ,m, by dropping the Ak’s one after another. Notice here

that after completing the k-steps, we would have shown that P
′ dominates P on any union

of k upper orthants.

Since U2 and A1 are disjoint with U2 ∪ A1 = U1, we have P
′(U2) + P

′(A1) > P(U2) +

P(A1). Clearly, if P
′(A1) < P(A1), then P

′(U2) > P(U2) holds. Assume now that P
′(A1) >

P(A1). Then, U2 can be partioned as

U2 = O(n1m, n22) ∪ O(n − n22 + 1, n21) ∪ B2,
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where B2 = R{(n11, n21), (n11, n22 − 1), (n − n22, n22 − 1), (n − n22, n21)}. By Proposition

1(a), P
′(B2)/P(B2) > P

′(A1)/P(A1) and so P
′(B2) > P(B2). Since U2 has the above

partition, we conclude that P
′(U2) > P(U2).

It will now be instructive to consider the case m = 3. Since U2 = U3 ∪ A2, we have

P
′(U3) + P

′(A2) > P(U3) + P(A2). Thus, if P
′(A2) < P(A2), then P

′(U3) > P(U3) holds.

So, assume that P
′(A2) > P(A2). There are now two possibilities: either n11 6 n− n23 or

n11 > n − n23. In the first case, partition U3 as

U3 = {O(n11, n21) ∪ O(n13, n23)} ∪ B3,

where B3 = R{(n11 − 1, n22), (n11 − 1, n23 − 1), (n12, n23 − 1), (n12, n22)}. The first part

of U3 is the union of two upper orthants wherein P
′ dominates P (by the previous step).

Moreover, P
′(B3)/P(B3) > P

′(A2)/P(A2) and so P
′(B3) > P(B3). Hence, we conclude

that P
′(U3) > P(U3). In the second case, partition U3 as

U3 = {O(n11, n12) ∪ O(n − n23 + 1, n22)} ∪ O(n13, n23) ∪ B3,

where now B3 = R{(n12, n22), (n12, n23−1), (n−n23, n23−1), (n−n23, n22)}. Once again,

use Proposition 1(a) to get P
′(B3) > P(B3). Since P

′ dominates P also on the remaining

two parts of U3 (i.e., the union of the two upper orthants and the single upper orthant),

we arrive at the result.

Consider now the general case. Given that P
′(Uk) > P(Uk), we will show that

P
′(Uk+1) > P(Uk+1). Since Uk = Uk+1 ∪ Ak and Uk+1 ∩ Ak = ∅, we have P

′(Uk+1) +

P
′(Ak) > P(Uk+1) + P(Ak). If P

′(Ak) < P(Ak), then we are done. On the other hand, if

P
′(Ak) > P(Ak), consider first the case n1,k−1 6 n − n2,k+1 and partition Uk+1 as

Uk+1 =
{[

∪k−1
j=1 O(n1j , n2j)

]

∪ O(n1,k+1, n2,k+1)
}

∪ Bk+1,

where Bk+1 = R{(n1,k−1−1, n2k), (n1,k−1−1, n2,k+1−1), (n1k, n2,k+1−1), (n1k, n2k)}. Note

that on the above union of the k upper orthants, P
′ dominates P. Moreover, P

′(Bk+1) >

P(Bk) by Proposition 1(a) and the result then follows. When n1,k−1 > n−n2,k+1, partition

Uk+1 as

Uk+1 =
{[

∪k−1
j=1 O(n1j, n2j)

]

∪ O(n − n2,k+1 + 1, n2k)
}

∪ O(n1,k+1, n2,k+1) ∪ Bk+1,

where now Bk+1 = R{(n1k, n2k), (n1k, n2,k+1−1), (n−n2,k+1, n2,k+1−1), (n−n2,k+1, n2k)}.

The first part of Uk+1 consists of the union of k−1 upper orthants wherein P
′ dominates P.
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The second part is an upper orthant and finally by Proposition 1(a), P
′(Bk+1)/P(Bk+1) >

P
′(Ak)/P(Ak) which implies that P

′(Bk+1) > P(Bk+1) as well. Hence, P
′(Uk+1) > P(Uk+1).

By induction, it then follows that P
′(U) > P(U), and the theorem is thus established.
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